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Chapter 1

Limits (LT)

Learning Outcomes
How do we measure “close-by” values?
By the end of this chapter, you should be able to...

1. Find limits from the graph of a function.

2. Infer the value of a limit based on nearby values of the function.

3. Compute limits of functions given algebraically, using proper limit properties.

4. Determine where a function is and is not continuous.

5. Determine limits of functions at infinity.

6. Determine limits of functions approaching vertical asymptotes.

1



Limits Graphically (LT1)

1.1 Limits Graphically (LT1)

Learning Outcomes
• Find limits from the graph of a function.



Limits Graphically (LT1)

Activity 1.1.1 In Figure 1 the graph of a function is given, but something is wrong. The
graphic card failed and one portion did not render properly. We can’t see what is happening
in the neighborhood of x = 2.

Figure 1 A graph of a function that has not been rendered properly.

(a) Imagine moving along the graph toward the missing portion from the left, so that you
are climbing up and to the right toward the obscured area of the graph. What y-value
are you approaching?

A. 0.5
B. 1

C. 1.5
D. 2

E. 2.5

(b) Think of the same process, but this time from the right. You’re falling down and to
the left this time as you come close to the missing portion. What y-value are you
approaching?

A. 0.5
B. 1

C. 1.5
D. 2

E. 2.5



Limits Graphically (LT1)

Activity 1.1.2 In Figure 2 the graphic card is working again and we can see more clearly
what is happening in the neighborhood of x = 2.

Figure 2 A graph of a function that has rendered properly

(a) What is the value of f(2)?

(b) What is the y-value that is approached as we move toward x = 2 from the left?

A. 0.5
B. 1

C. 1.5
D. 2

E. 2.5

(c) What is the y-value that is approached as we move toward x = 2 from the right?

A. 0.5
B. 1

C. 1.5
D. 2

E. 2.5



Limits Graphically (LT1)

Remark 1.1.3 When studying functions in algebra, we often focused on the value of a
function given a specific x-value. For instance, finding f(2) for some function f(x). In
calculus, and here in Activity 1.1.1 and Activity 1.1.2, we have instead been exploring what
is happening as we approach a certain value on a graph. This concept in mathematics is
known as finding a limit.



Limits Graphically (LT1)

Activity 1.1.4 Based on Activity 1.1.1 and Activity 1.1.2, write your first draft of the
definition of a limit. What is important to include? (You can use concepts of limits from
your daily life to motivate or define what a limit is.)



Limits Graphically (LT1)

Definition 1.1.5 Given a function f , a fixed input x = a, and a real number L, we say that
f has limit L as x approaches a, and write

lim
x→a

f(x) = L

provided that we can make f(x) as close to L as we like by taking x sufficiently close (but
not equal) to a. If we cannot make f(x) as close to a single value as we would like as x
approaches a, then we say that f does not have a limit as x approaches a. ♢



Limits Graphically (LT1)

Activity 1.1.6

Figure 3 A piecewise-defined function
What is the limit as x approaches 0 in Figure 3?

A. The limit is 1

B. The limit is -1

C. The limit is 0

D. The limit is not defined



Limits Graphically (LT1)

Definition 1.1.7 We say that f has limit L1 as x approaches a from the left and write

lim
x→a−

f(x) = L1

provided that we can make the value of f(x) as close to L1 as we like by taking x sufficiently
close to a while always having x < a. We call L1 the left-hand limit of f as x approaches a.
Similarly, we say L2 is the right-hand limit of f as x approaches a and write

lim
x→a+

f(x) = L2

provided that we can make the value of f(x) as close to L2 as we like by taking x sufficiently
close to a while always having x > a. ♢



Limits Graphically (LT1)

Activity 1.1.8 Refer again to Figure 3 from Activity 1.1.6.

(a) Which of the following best matches the definition of right and left limits? (Note that
DNE is short for ”does not exist.”)

A. The left limit is -1. The right limit is 1.
B. The left limit is 1. The right limit is -1.
C. The left limit DNE. The right limit is 1.
D. The left limit is -1. The right limit DNE.
E. The left limit DNE. The right limit DNE.

(b) What do you think the overall limit equals?

A. The limit is 1
B. The limit is -1

C. The limit is 0
D. The limit is not defined



Limits Graphically (LT1)

Activity 1.1.9 Consider the following graph:

Figure 4 Another piecewise-defined function

(a) Find lim
x→−3−

f(x) and lim
x→−3+

f(x).

(b) Find lim
x→−1−

f(x) and lim
x→−1+

f(x).

(c) Find lim
x→2−

f(x) and lim
x→2+

f(x).

(d) Find lim
x→4−

f(x) and lim
x→4+

f(x).

(e) For which x-values does the overall limit exist? Select all. If the limit exists, find it.
If it does not, explain why.

A. −3

B. −1

C. 2

D. 4



Limits Graphically (LT1)

Activity 1.1.10 Sketch the graph of a function f(x) that meets all of the following criteria.
Be sure to scale your axes and label any important features of your graph.

1. lim
x→5−

f(x) is finite, but lim
x→5+

f(x) is infinite.

2. lim
x→−3

f(x) = −4, but f(−3) = 0.

3. lim
x→−1−

f(x) = −1 but lim
x→−1+

f(x) ̸= −1.



Limits Graphically (LT1)

Activity 1.1.11 In this activity we will explore a mathematical theorem, the Squeeze The-
orem (Theorem 1.1.11).

(a) The part of the theorem that starts with “Suppose…” forms the assumptions of the
theorem, while the part of the theorem that starts with “Then…” is the conclusion
of the theorem. What are the assumptions of the Squeeze Theorem? What is the
conclusion?

(b) The assumptions of the Squeeze Theorem can be restated informally as “the function
g is squeezed between the functions f and h around a.” Explain in your own words
how the two assumptions result into a “squeezing effect.”

(c) Let’s see an example of the application of this theorem. First examine the following
picture. Explain why, from the picture, it seems that both assumptions of the theorem
hold.

Figure 5 A pictorial example of the Squeeze Theorem.

(d) Match the functions f(x), g(x), h(x) in the picture to the functions cos(x), 1, sin(x)
x

.

(e) Using trigonometry, one can show algebraically that cos(x) ≤ sin(x)
x

≤ 1 for x values
close to zero. Moreover, lim

x→0
cos(x) = cos(0) = 1 (we say that cosine is a continuous

function). Use these facts and the Squeeze Theorem, to find the limit lim
x→0

sin(x)
x

.



Limits Numerically (LT2)

1.2 Limits Numerically (LT2)

Learning Outcomes
• Infer the value of a limit based on nearby values of the function.



Limits Numerically (LT2)

Activity 1.2.1
Table 6

x 6.9 6.99 6.999 7 7.001 7.01 7.1

f(x) 0.1695 0.1699 0.1667 ? 0.1667 0.1664 0.1639

Based on the values of Table 7, what is the best approximation for lim
x→7

f(x)?

A. the limit is approximately 7

B. the limit is approximately 0.17

C. the limit is approximately 0.16

D. the limit is approximately 0.1667

E. the limit is approximately 6.9999



Limits Numerically (LT2)

Remark 1.2.2 Notice that the value we obtained in Activity 1.2.1 is only an approximation,
based on the trends that we have seen within the table.



Limits Numerically (LT2)

Activity 1.2.3
Table 7

x 1.25 1.5 1.75 2 2.25 2.5 2.75

f(x) −0.7606 −0.13 0.4881 ? 1.3119 1.33 0.9606

In Activity 1.1.1’s Figure 1 we found an approximation to the limit of the function as x
tends to 2. Now let us say you are also given a table of numerical values (Table 8) for the
function. Given this new information which of the choices below best describes the limit of
the function as x tends to 2?

A. There is not enough information because we do not know the value of the function at
x = 2.

B. The limit can be approximated to be 1 because the data in the table and the graph
show that from the left and the right the function approaches 1 as x goes to 2.

C. The limit can be approximated to be 1 because the values appear to approach 1 and
the graph appears to approach 1, but we should zoom in on the graph to be sure.

D. The limit cannot be approximated because the function might not exist at x = 2.



Limits Numerically (LT2)

Activity 1.2.4
Table 8

x 0.9 0.99 0.999 1 1.001 1.01 1.1

f(x) −0.4 −0.49 −0.499 ? 0.499 0.49 0.4

Based on Table 9, what information can be inferred about lim
x→1−

f(x), lim
x→1+

f(x), and
lim
x→1

f(x)?

A. lim
x→1−

f(x) = −0.5, lim
x→1+

f(x) = 0.5, and lim
x→1

f(x) = 0

B. lim
x→1−

f(x) = −0.5, lim
x→1+

f(x) = 0.5, and lim
x→1

f(x) does not exist

C. lim
x→1−

f(x) = 0.5, lim
x→1+

f(x) = −0.5, and lim
x→1

f(x) does not exist

D. lim
x→1−

f(x) = 0.5, lim
x→1+

f(x) = −0.5, and lim
x→1

f(x) = 0



Limits Numerically (LT2)

Activity 1.2.5 Consider the following function f(x) = 3x3 + 2x2 − 5x+ 20.

(a) Of the following options, at which values given would you evaluate f(x) to best deter-
mine lim

x→2
f(x) numerically?

A. 1.9, 1.99, 2.0, 2.01, 2.1
B. 1.98, 1.99, 2.0, 2.01, 2.02

C. 1.8, 1.9, 2.0, 2.1, 2.2
D. 1.0, 1.5, 2.0, 2.5, 3.0

(b) Use the values that you chose in part (a) to calculate an approximation for lim
x→2

f(x).

(c) Which value best describes the limit that you obtained in part (b)?

A. The approximate value is 41.25
B. The approximate value is 41.5
C. The approximate value is 41.75
D. The approximate value is 42



Limits Numerically (LT2)

Activity 1.2.6 In Figure 10 is the graph for f(x) = sin
(
1

x

)
. Several values for f(x) in the

neighborhood of x = 0 are approximated in Table 11.

Figure 9 Graph of f(x) = sin(1/x).
Table 10

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f(x) 0.54402 0.50637 −0.82688 ? 0.82688 −0.50637 −0.54402

(a) Based on the graph and table what is the best explanation for the limit as x tends to
zero?

A. The limit does not exist because the left and right limits have opposite values.
B. The limit does not exist because we do not have enough information to answer

the question.
C. The limit does not exist because the function is oscillating between -1 and 1.
D. The limit does not exist because you are dividing by zero when x = 0 for f(x).

(b) Would your conclusion that resulted from Activity 1.2.6 change if the function was
f(x) = cos(1/x) or f(x) = tan(1/x)?



Limits Numerically (LT2)

Activity 1.2.7 Use technology to complete the following table of values.

f(x) =
x2 − x− 12

x2 + 16x+ 39

x −3.1 −3.01 −3.001 −3 −2.999 −2.99 −2.9

f(x)

Then explain how to use it to make an educated guess as to the value of the limit

lim
x→−3

x2 − x− 12

x2 + 16x+ 39



Limits Numerically (LT2)

Activity 1.2.8 In this activity you will study the velocity of Usain Bolt in his Beijing 100
meters dash. He completed 100 meters in 9.69 seconds for an overall average speed of 100/
9.69 = 10.32 meters per second (about 23 miles per hour). But this is the average velocity on
the whole interval. How fast was he at different instances? What was his maximum velocity?
Let’s explore this. The table Table 12 shows his split times recorded every 10 meters.
Table 11

t (seconds) 1.85 2.87 3.78 4.65 5.5 6.32 7.14 7.96 8.79 9.69

d (meters) 10 20 30 40 50 60 70 80 90 100

(a) What was the average velocity on the first 50 meters? On the second 50 meters?

(b) What was the average velocity between 30 and 50 meters? Between 50 and 70 meters?

(c) What was the average velocity between 40 and 50 meters? Between 50 and 60 meters?

(d) What is your best estimate for the Usain’s velocity at the instant when he passed the
50 meters mark? This is your estimate for the instantaneous velocity.

(e) Using the table of values, explain why 50 meters is NOT the best guess for when the
instantaneous velocity was the largest. What other point would be more reasonable?



Limits Analytically (LT3)

1.3 Limits Analytically (LT3)

Learning Outcomes
• Compute limits of functions given algebraically, using proper limit properties.



Limits Analytically (LT3)

Remark 1.3.1 Recall that in Activity 1.2.5 we used numerical methods and table of values
to find the limit of a relatively simple degree three polynomial at a point. This was inefficient,
“there’s gotta be a better way!”



Limits Analytically (LT3)

Activity 1.3.2 Given f(x) = 3x2 − 1

2
x+4, evaluate f(2) and approximate lim

x→2
f(x) numer-

ically (or graphically). What do you think is more likely?

A. lim
x→2

f(x) = f(2)

B. lim
x→2

f(x) ≈ f(2)

C. lim
x→2

f(x) ̸= f(2)



Limits Analytically (LT3)

Activity 1.3.3 The table below gives values of a few different functions.
Table 12

x 6.99 6.999 7.001 7.01
f(x) 13.99 13.999 14.001 14.01
g(x) 22.97 22.997 23.003 23.03
3f(x) 41.97 41.997 42.003 42.03
f(x)+g(x) 36.96 36.996 37.004 37.04
f(x)g(x) 321.350 321.935 322.065 322.650

Using the table above, which of the following is least likely to be true?

A. lim
x→7

f(x) = 14 and lim
x→7

g(x) = 23

B. lim
x→7

3f(x) = 3 lim
x→7

f(x)

C. lim
x→7

(f(x) + g(x)) = lim
x→7

f(x) + lim
x→7

g(x)

D. lim
x→7

(f(x)g(x)) = f(7)
(

lim
x→7

g(x)
)



Limits Analytically (LT3)

Remark 1.3.4 In Activity 1.3.3 we observed that limits seem to be ”well-behaved” when
combined with standard operations on functions. The next theorems, known as Limit Laws,
tell us how limits interact with combinations of functions.



Limits Analytically (LT3)

Activity 1.3.5 If lim
x→2

f(x) = 2 and lim
x→2

g(x) = −3, which of the following statements are
true? Select all that apply!

A. lim
x→2

(f(x) · g(x)) = −6

B. lim
x→2

(f(x) + g(x)) = −1

C. lim
x→2

(f(x)− g(x)) = −2

D. lim
x→2

(f(x)/g(x)) = −2/3



Limits Analytically (LT3)

Activity 1.3.6 Below you are given the graphs of two functions. Compute the limits below
(if possible).

−2 −1 1 2 3 4 5 6 7 8

−3

−2

−1

1

2

3

f(x)

x

y

Figure 13 The graph of f(x).

−3 −2 −1 1 2 3

−2

−1

1

2

3

4

g(x)

x

Figure 14 The graph of g(x).

(a) lim
x→1

f(x) + g(x).

(b) lim
x→5+

3f(x).

(c) lim
x→0+

f(x)g(x).

(d) (Challenge) lim
x→1

g(x)/f(x).

(e) (Challenge) lim
x→0+

f(g(x)).



Limits Analytically (LT3)

Activity 1.3.7 Given p(x) = −3x2 − 5x+ 7, which of the following limit laws would use to
determine lim

x→2
p(x)? Choose all that apply.

A. Sums/Difference Law

B. Scalar Multiple Law

C. Product Law

D. Identity Law

E. Power Law

F. Constant Law



Limits Analytically (LT3)

Activity 1.3.8 Given p(x) = −3x2 − 5x+ 7 and q(x) = x4 − x2 + 3, which of the following

describes the most efficient way to determine lim
x→−1

p(x)

q(x)
?

A. Sums/difference, scalar multiple, and product laws

B. Theorem 1.3.10 and the quotient law

C. Power, sums/difference, scalar multiple, and constant laws

D. Quotient and root law



Limits Analytically (LT3)

Activity 1.3.9 Consider taking the limit of a rational function p(x)

q(x)
as x → c. If q(c) = 0,

is it possible for lim
x→c

p(x)

q(x)
to equal a number?

A. No, because p(x)

q(x)
is not defined at x = c since q(c) = 0.

B. Yes, because if you graph f(x) =
x2 − 1

x− 1
, the value f(1) is not defined, but the graph

shows that the limit of f(x) does exist as x → 1.

C. No, because if you graph g(x) =
x2 + 1

x− 1
, the value g(1) is not defined and the graph

shows that the limit of lim
x→c

g(x) does not exist.

D. Yes, because we can use Theorem 1.3.12.
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Activity 1.3.10 Let f(x) = 2x and g(x) = x, which of the following statements is true?

A. lim
x→0

(f(x)/g(x)) = 0

B. lim
x→0

(f(x)/g(x)) = 2

C. lim
x→0

(f(x)/g(x)) cannot be determined

D. lim
x→0

(f(x)/g(x)) does not exist
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Remark 1.3.11 When we compute the limit of a ratio where both the numerator and
denominator have limit equal to zero, we have to compute the value of a 0

0
indeterminate

form. The value of an indeteminate form can be any real number or even infinity or not
existent, we just do not know yet! We can usually determine the value of an indeterminate
form using some algebraic manipulations of the expression given.
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Definition 1.3.12 A function f(x) has a hole at x = c if f(c) does not exist but lim
x→c

f(x)

does exist and is equal to a real number. ♢
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The function f(x) =
x2 − 1

x− 1
has a hole at x = 1 because f(1) is not defined but

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x− 1)(x+ 1)

x− 1
= lim

x→1
(x+ 1) = 2,

so the limit exists and is equal to a real number. Notice that lim
x→1

x2 − 1

x− 1
is also an example

of a limit giving an indeterminate form 0

0
which we could then compute using an algebraic

manipulation of the function given. □
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Activity 1.3.14 Determine the following limits and explain your reasoning.

lim
x→−6

x2 − 6x+ 5

x2 − 3x− 18

lim
x→−1

x2 − 1

x2 + 3x+ 2

lim
x→5

x− 5√
x+ 31− 6
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Activity 1.3.15 In Activity 1.2.8 you studied the velocity of Usain Bolt in his Beijing
100 meters dash. We will now study this situation analytically. To make our computations
simpler, we will approximate that he could run 100 meters in 10 seconds and we will consider
the model d = f(t) = t2, where d is the distance in meters and t is the time in seconds.

Note 1.3.16 The average velocity is the ratio distance covered over time elapsed. If we
consider the interval that starts at t = a and has width h, written [a, a + h], the average

velocity on this interval is f(a+ h)− f(a)

(a+ h)− a
=

f(a+ h)− f(a)

h
. The instantaneous velocity

at time t = a is given by:
lim
h→0

f(a+ h)− f(a)

h
.

(a) Compute the average velocity on the interval [5, 6]. We think of this interval as [5, 5+h]
for the value of h = 1.

(b) Compute the average velocity starting at 5 seconds, but now with h = 0.5 seconds.

(c) We want to study the instantaneous velocity at a = 5 seconds. Find an expression for
the average velocity on the interval [5, 5 + h], where h is an unspecified value.

(d) Expand your expression. When h ̸= 0, you can simplify it!

(e) Recall that the instantaneous velocity is the limit of your expression as h → 0. Find
the instantaneous velocity given by this model at t = 5 seconds.

(f) The model d = f(t) = t2 does not really capture the real-world situation. Think of at
least one reason why this model does not fit the scenario of Usain Bolt’s 100 meters
dash.
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1.4 Continuity (LT4)

Learning Outcomes
• Determine where a function is and is not continuous.



Continuity (LT4)

Remark 1.4.1 A continuous function is one whose values change smoothly, with no jumps
or gaps in the graph. We’ll explore the idea first, and arrive at a mathematical definition
soon.
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Activity 1.4.2 Which of the following scenarios best describes a continuous function?

A. The age of a person reported in years

B. The price of postage for a parcel depending on its weight

C. The volume of water in a tank that is gradually filled over time

D. The number of likes on my latest TikTok depending on the time since I posted it
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Remark 1.4.3 How would you use the language of limits to clarify the definition of conti-
nuity?
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Activity 1.4.4 A function f defined on −4 < x < 4 has the graph pictured below. Use the
graph to answer each of the following questions.

Figure 15

(a) For each of the values a = −3, −2, −1, 0, 1, 2, 3, determine whether the limit lim
x→a

f(x)

exists. If the limit does not exist, be ready to explain why not.

(b) For each of the values of a where the limit of f exists, determine the value of f(a) at
each such point.

(c) For each such a value, is f(a) equal to lim
x→a

f(x)?

(d) Use your understanding of continuity to determine whether f is continuous at each
value of a.

(e) Are there any revisions you would make to the definition of continuity that you arrived
at toward the end of Remark 1.4.3?
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Definition 1.4.5 A function f is continuous at x = a provided that

1. f has a limit as x → a

2. f is defined at x = a (equivalently, a is in the domain of f), and

3. lim
x→a

f(x) = f(a).

♢
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Activity 1.4.6 Suppose that some function h(x) is continuous at x = −3. Use Defini-
tion 1.4.5 to decide which of the following quantities are equal to each other.

A. lim
x→−3+

h(x)

B. lim
x→−3−

h(x)

C. lim
x→−3

h(x)

D. h(−3)
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Activity 1.4.7 Consider the function f whose graph is pictured below (it’s the same graph
from Activity 1.4.4). In the questions below, consider the values a = −3, −2, −1, 0, 1, 2, 3.

Figure 16

(a) For which values of a do we have lim
x→a−

f(x) ̸= lim
x→a+

f(x)?

(b) For which values of a is f(a) not defined?

(c) For which values of a does f have a limit at a, yet f(a) ̸= lim
x→a

f(x)?

(d) For which values of a does f fail to be continuous? Give a complete list of intervals on
which f is continuous.
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Activity 1.4.8 Which condition is stronger, meaning it implies the other?

A. f has a limit at x = a B. f is continuous at x = a
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Activity 1.4.9 Previously, you have used graphs, tables, and formulas to answer questions
about limits. Which of those are suitable for answering questions about continuity?

A. Graphs only

B. Formulas only

C. Graphs and formulas only

D. Tables and formulas only
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Activity 1.4.10 Consider the function f whose graph is pictured below.

−2 −1 1 2 3 4 5 6 7 8

−3

−2

−1

1

2

3

f(x)

x

y

Figure 17 The graph of f(x).
Give a list of x-values where f(x) is not continuous. Be prepared to defend your answer

based on Definition 1.4.5.
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Remark 1.4.11 When lim
x→a

f(x) exists but is not equal to f(a), we say that f has a remov-
able discontinuity at x = a. This is because if f(a) were redefined to be equal to lim

x→a
f(x),

the redefined function would be continuous at x = a, thus “removing” the discontinuity.
When the left and right limit exist separately, but are not equal, the discontinuity is not

removable and is called a jump discontinuity.
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Activity 1.4.12

(a) Determine the value of b to make h(x) continuous at x = 5.

h(x) =

{
b− x, x < 5

−x2 + 6x− 6, x ≥ 5

(b) Classify the type of discontinuity present at x = −6 for the function f(x).

f(x) =


−8x− 46, x < −6

6, x = −6

4x+ 30, x > −6
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Activity 1.4.13 Answer the questions below about piecewise functions. It may be helpful
to look at some graphs.

(a) Which values of c, if any, could make the following function continuous on the real
line?

g(x) =

{
x+ c x ≤ 2

x2 x > 2

(b) Which values of c, if any, could make the following function continuous on the real
line?

h(x) =

{
4 x ≤ c

x2 x > c

(c) Which values of c, if any, could make the following function continuous on the real
line?

k(x) =

{
x x ≤ c

x2 x > c
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Activity 1.4.14 In this activity we will explore a mathematical theorem, the Intermediate
Value Theorem.

(a) To get an idea for the theorem, draw a continuous function f(x) on the interval [0, 10]
such that f(0) = 8 and f(10) = 2. Find an input c where f(c) = 5.

(b) Now try to draw a graph similar to the previous one, but that does not have any input
corresponding to the output 5. Then, find where your graph violates these conditions:
f(x) is continuous on [0, 10], f(0) = 8, and f(10) = 2.

(c) The part of the theorem that starts with “Suppose…” forms the assumptions of the
theorem, while the part of the theorem that starts with “Then…” is the conclusion of
the theorem. What are the assumptions of the Intermediate Value Theorem? What is
the conclusion?

(d) Apply the Intermediate Value Theorem to show that the function f(x) = x3 + x − 3
has a zero (so crosses the x-axis) at some point between x = −1 and x = 2. (Hint:
What interval of x values is being considered here? What is N? Why is N between
f(a) and f(b)?)
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1.5 Limits with Infinite Inputs (LT5)

Learning Outcomes
• Determine limits of functions at infinity.
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Activity 1.5.1 Consider the graph of the polynomial function f(x) = x3 . We want to think
about what the long term behavior of this function might be. Which of the following best
describes its behavior?

−4 −2 2 4

−60

−40

−20

20

40

60

Figure 18 The graph of x3.

A. As x gets larger, the function x3 gets smaller and smaller.

B. As x gets more and more negative, the function x3 gets more and more negative.

C. As x gets more and more positive, the function x3 gets more and more negative.

D. As x gets smaller, the function x3 gets smaller and smaller.
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Remark 1.5.2 We say that “the limit as x tends to negative infinity of x3 is negative infinity”
and that “the limit as x tends to positive infinity of x3 is positive infinity.” In symbols, we
write

lim
x→∞

x3 = ∞

and
lim

x→−∞
x3 = −∞.
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Activity 1.5.3 Consider the graph of the rational function f(x) = 1/x3 . We want to think
about what the long-term behavior of this function might be. Which of the following best
describes its behavior?

−2 −1 1 2

−1,000

−500

500

1,000

Figure 19 The graph of 1/x3.

A. As x tends to ∞, the function 1/x3 tends to ∞.

B. As x tends to −∞, the function 1/x3 tends to 0.

C. As x tends to ∞, the function 1/x3 tends to −∞.

D. As x tends to 0, the function 1/x3 tends to 0.
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Definition 1.5.4 A function has a horizontal asymptote at y = b when

lim
x→∞

f(x) = b

or
lim

x→−∞
f(x) = b

This means that we can make the output of f(x) as close as we want to b, as long as we take
x a large enough positive number (x → ∞) or a large enough negative number (x → −∞).

♢
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Remark 1.5.5 The function 1/x3 has horizontal asymptote y = 0 on both the left and the
right, because

1

x3
→ 0 as x → −∞

and
1

x3
→ 0 as x → ∞.
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Activity 1.5.6 Which of the following functions have horizontal asymptotes? Select all!
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Figure 20 A
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Figure 21 B
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Figure 22 C
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Figure 23 D
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Figure 24 E
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Figure 25 F
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Activity 1.5.7 Recall that a rational function is a ratio of two polynomials. For any given
rational function, what are all the possible behaviors as x tends to ∞ or −∞?

A. The only possible limit is 0.

B. The only possible limits are 0 or ±∞.

C. The only possible limits are 0, 1 or ±∞.

D. The only possible limits are any constant number or ±∞.
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Activity 1.5.8 In this activity we will examine functions whose limits as x approaches ±∞
are nonzero constants.

(a) Graph the following functions and consider their limits as x approaches ∞ and −∞.
Which functions have such a limit that is nonzero and constant? Find each of these
limits.

A. f(x) =
x3 − x+ 3

2x3 − 6x+ 1

B. f(x) =
x2 − 3

5x3 − 2x2 + 5

C. f(x) =
x4 − 3x− 2

3x3 − 5x+ 1

D. f(x) =
10x5 − 3x+ 2

5x5 − 3x2 + 1

E. f(x) =
−8x2 − 5x+ 1

2x2 − 2x+ 3

(b) Conjecture a rule for how to determine that a rational function has a nonzero constant
limit as x approaches ∞ or −∞. Test your rule by creating a rational function whose
limit as x → ∞ equals 3 and then check it graphically.
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Activity 1.5.9 What about when the limit is not a nonzero constant? How do we recognize
those? In this activity you will first conjecture the general behavior of rational functions and
then test your conjectures.

(a) Consider a rational function r(x) =
p(x)

q(x)
. Looking at the numerator p(x) and the

denominator q(x), when does the function r(x) have limit equal to 0 as x → ∞?

A. When the ratio of the leading terms is a constant.
B. When the degree of the numerator is greater than the degree of the denominator.
C. When the degree of the numerator is less than the degree of the denominator.
D. When the degree of the numerator is equal to the degree of the denominator.

(b) Consider a rational function r(x) =
p(x)

q(x)
. Looking at the numerator p(x) and the

denominator q(x), when does the function r(x) have limit approaching infinity as
x → ∞?

A. When the ratio of the leading terms is a constant.
B. When the degree of the numerator is greater than the degree of the denominator.
C. When the degree of the numerator is less than the degree of the denominator.
D. When the degree of the numerator is equal to the degree of the denominator.

(c) Conjecture a rule for the each of the previous two parts of the activity. Test your rules
by creating a rational function whose limit as x → ∞ equals 0 and another whose limit
as x → ∞ is infinite. Then check them graphically.
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Activity 1.5.10 Explain how to find the value of each limit.

(a)

lim
x→−∞

−6x4 + 7x3 − 7

6x− x4 + 9
and lim

x→+∞
−6x4 + 7x3 − 7

6x− x4 + 9

(b)

lim
x→−∞

− 7x4 − 5x3 + 8

3 (2 x5 + 3x2 − 3)
and lim

x→+∞
− 7x4 − 5x3 + 8

3 (2 x5 + 3x2 − 3)

(c)

lim
x→−∞

3x6 + x3 − 8

7x− 6x5 + 7
and lim

x→+∞

3x6 + x3 − 8

7x− 6x5 + 7
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Activity 1.5.11 What is your best guess for the limit as x goes to ∞ of the function graphed
below?

−10 −5 5 10

−1

1

Figure 26 A mysterious periodic function.

A. The limit is 0.

B. The limit is 1.

C. The limit is −1.

D. The limit is +∞.

E. The limit does not exist.
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Activity 1.5.12 Compute the following limits.

(a) lim
x→−∞

x3 − x+ 83

1

(b) lim
x→−∞

1

x3 − x+ 83

(c) lim
x→+∞

x+ 3

2− x

(d) lim
x→−∞

π − 3x

πx− 3

(e) (Challenge) lim
x→+∞

3ex + 2

2ex + 3

(f) (Challenge) lim
x→−∞

3ex + 2

2ex + 3
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Activity 1.5.13 The graph below represents the function f(x) =
2(x+ 3)(x+ 1)

x2 − 2x− 3
.
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Figure 27 The graph of f(x)

(a) Find the horizontal asymptote of f(x). First, guess it from the graph. Then, prove
that your guess is right using algebra.

(b) Use limit notation to describe the behavior of f(x) at its horizontal asymptotes.

(c) Come up with the formula of a rational function that has horizontal asymptote y = 3.

(d) What do you think is happening around x = 3? We will come back to this in the next
section!



Limits with Infinite Inputs (LT5)

Note 1.5.14 An exponential function P (t) = a bt exhibiting exponential decay will have the
long term behavior P (t) → 0 as t → ∞. If we shift the graph up by c units, we obtain the
new function Q(t) = a bt + c, with the long term behavior lim

t→∞
Q(t) = c. A cooling object

can be represented by the exponential decay model Q(t) = a bt + c.
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Activity 1.5.15 In this activity you will explore an exponential model for a cooling object.
Consider a cup of coffee initially at 100 degrees Fahrenheit. The said cup of coffee

was forgotten this morning on the kitchen counter where the thermostat is set at 72 degrees
Fahrenheit. From previous observations, we can assume that a cup of coffee looses 10 percent
of its temperature each minute.

(a) In the long run, what temperature do you expect the coffee to tend to? Write your
observation with limit notation.

(b) In the model Q(t) = a bt + c, your previous answer gives you the value of one of the
parameters in this model. Which one?

(c) From the information given, we notice that the cup of coffee has decay rate of 10% or
r = −0.1. When an exponential model has decay rate r, its exponential base b has
value b = 1 + r. Use this to find the value of b for the exponential model described in
this scenario.

(d) Assume that the initial temperature corresponds to input t = 0. Use the data about
the initial temperature to find the value of the parameter a in the model Q(t) = a bt+c.

(e) You should have found that this scenario has exponential model Q(t) = 28 (0.9)t + 72.
If you go back to drink the cup of coffee 30 minutes after it was left on the counter,
what temperature will the coffee have reached?
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1.6 Limits with Infinite Outputs (LT6)

Learning Outcomes
• Determine limits of functions approaching vertical asymptotes.
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Activity 1.6.1 Consider the graph in Figure 33.
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Figure 28 The graph of 1/x2.

(a) Which of the following best describes the limit as x approaches zero in the graph?

A. The limit is 0
B. The limit is positive infinity

C. The limit does not exist
D. This limit is negative infinity

(b) Which of the following best describes the relationship between the line x = 0 and the
graph of the function?

A. The line x = 0 is a horizontal asymptote for the function
B. The function is not continuous at the point x = 0

C. The function is moving away from the line x = 0

D. The function is getting closer and closer to the line x = 0

E. The function has a jump in outputs around x = 0



Limits with Infinite Outputs (LT6)

Definition 1.6.2 A function has a vertical asymptote at x = a when

lim
x→a

f(x) = +∞

or
lim
x→a

f(x) = −∞

The limit being equal to positive infinity means that we can make the output of f(x) as large
a positive number as we want as long as we are sufficiently close to x = a. Similarly, the
limit being equal to negative infinity means that we can make the output of f(x) as large a
negative number as we want as long as we are sufficiently close to x = a. ♢



Limits with Infinite Outputs (LT6)

Activity 1.6.3 Select all of the following graphs which illustrate functions with vertical
asymptotes.
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Figure 29 Choices for vertical asymptotes
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Remark 1.6.4 If x = a is a vertical asymptote for the function f(x), the function f(x) is
not defined at x = a. As f(a) does not exist, the function is NOT continuous at x = a.
Moreover, the function’s output tends to plus or minus infinity and so the limit is not equal
to a number.
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Activity 1.6.5 Notice that as x goes to 0, the value of x2 goes to 0 but the value of 1/x2

goes to infinity. What is the best explanation for this behavior?

A. When dividing by an increasingly small number we get an increasing big number

B. When dividing by an increasingly large number we get an increasing small number

C. A rational function always has a vertical asymptote

D. A rational function always has a horizontal asymptote
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Remark 1.6.6 Informally, we say that the limit of ”1
0

” is infinite. Notice that this could
be either positive or negative infinity, depending on how whether the outputs are becoming
more and more positive or more and more negative as we approach zero.
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Activity 1.6.7 Consider the rational function f(x) =
2

x− 3
. Which of the following options

best describes the limits as x approaches 3 from the right and from the left?

A. As x → 3+, the limit DNE, but as x → 3− the limit is −∞.

B. As x → 3+, the limit is +∞, but as x → 3− the limit is −∞.

C. As x → 3+, the limit is +∞, but as x → 3− the limit is +∞.

D. As x → 3+, the limit is −∞, but as x → 3− the limit is −∞.

E. As x → 3+, the limit DNE and as x → 3− the limit DNE.
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Remark 1.6.8 When considering a ratio of functions f(x)/g(x), the inputs a where g(a) = 0
are not in the domain of the ratio. If g(a) = 0 but f(a) is not equal to 0, then x = a is a
vertical asymptote.
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Activity 1.6.9 Consider the function f(x) =
x2 − 1

x− 1
. The line x = 1 is NOT a vertical

asymptote for f(x). Why?

A. When x is not equal to 1, we can simplify the fraction to x− 1, so the limit is 1.

B. When x is not equal to 1, we can simplify the fraction to x+ 1, so the limit is 2.

C. The function is always equal to x+ 1.

D. The function is always equal to x− 1.
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Remark 1.6.10 Recall the definition of a hole from Definition 1.3.16. In Activity 1.6.9 we
have a hole at x = 1.
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Activity 1.6.11 Find all the vertical asymptotes of the following rational functions.

(a) y =
3x− 4

7x+ 1

(b) y =
x2 + 10x+ 24

x2 − 2x+ 1

(c) y =
(x2 − 4)(x2 + 1)

x6

(d) y =
2x+ 1

2x2 + 8x− 10
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Activity 1.6.12 Explain and demonstrate how to find the value of each limit.

(a)

lim
x→−3−

(x+ 4)2(x− 2)

(x+ 3)(x− 5)

(b)

lim
x→−3+

(x+ 4)2(x− 2)

(x+ 3)(x− 5)

(c)

lim
x→−3

(x+ 4)2(x− 2)

(x+ 3)(x− 5)
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Activity 1.6.13 The graph below represents the function f(x) =
(x+ 2)(x+ 4)

x2 + 3x− 4
.
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Figure 30 The graph of f(x)

(a) Explain the behavior of f(x) at x = −4.

(b) Find the vertical asymptote(s) of f(x). First, guess it from the graph. Then, prove
that your guess is right using algebra.

(c) Find the horizontal asymptote(s) of f(x). First, guess it from the graph. Then, prove
that your guess is right using algebra.

(d) Use limit notation to describe the behavior of f(x) at its asymptotes.
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Activity 1.6.14 Consider the following rational function.

r(x) =
5 (x− 3)(x− 6)3

6 (x+ 2)3(x− 3)

(a) Explain how to find the horizontal asymptote(s) of r(x), if there are any. Then express
your findings using limit notation.

(b) Explain how to find the hole(s) of r(x), if there are any. Then express your findings
using limit notation.

(c) Explain how to find the vertical asymptote(s) of r(x), if there are any. Then express
your findings using limit notation.

(d) Draw a rough sketch of r(x) that showcases all the limits that you have found above.



Limits with Infinite Outputs (LT6)

Activity 1.6.15 You want to draw a function with all these properties.

• lim
x→3

f(x) = 5

• f(3) = 0

• lim
x→0−

f(x) = −∞

• lim
x→0+

f(x) = 0

• lim
x→+∞

f(x) = 2

Before you start drawing, consider the following guiding questions.

(a) At which x values will the limit not exist?

(b) What are the asymptotes of this function?

(c) At which x values will the function be discontinuous?

(d) Draw the graph of one function with all the properties above. Make sure that your
graph is a function! You only need to draw a graph, writing a formula would be very
challenging!



Chapter 2

Derivatives (DF)

Learning Outcomes
How can we measure the instantaneous rate of change of a function?
By the end of this chapter, you should be able to...

1. Estimate the value of a derivative using difference quotients, and draw corresponding
secant and tangent lines on the graph of a function.

2. Find derivatives using the definition of derivative as a limit.

3. Compute basic derivatives using algebraic rules.

4. Compute derivatives using the Product and Quotient Rules.

5. Compute derivatives using the Chain Rule.

6. Compute derivatives using a combination of algebraic derivative rules.

7. Compute derivatives of implicitly-defined functions.

8. Compute derivatives of inverse functions.
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Derivatives Graphically and Numerically (DF1)

2.1 Derivatives Graphically and Numerically (DF1)

Learning Outcomes
• Estimate the value of a derivative using difference quotients, and draw corresponding

secant and tangent lines on the graph of a function.



Derivatives Graphically and Numerically (DF1)

Activity 2.1.1 In this activity you will study the velocity of a ball falling under gravity.
The height of the ball (in feet) is given by the formula f(t) = 64 − 16(t − 1)2, where t is
measured in seconds. We want to study the velocity at the instant t = 2, so we will look at
smaller and smaller intervals around t = 2. For your convenience, below you will find a table
of values for f(t). Recall that the average velocity is given by the change in height over the
change in time.
Table 31

t (seconds) 1 1.5 1.75 2 2.25 2.5 3
f(t) (feet) 64 60 55 48 39 28 0

(a) To start we will look at an interval of length one before t = 2 and after t = 2, so we
consider the intervals [1, 2] and [2, 3]. What was the average velocity on the interval
[1, 2]? What about on the interval [2, 3]?

(b) Now let’s consider smaller intervals of length 0.5. What was the average velocity on
the interval [1.5, 2]? What about on the interval [2, 2.5]?

(c) What was the average velocity on the interval [1.75, 2]? What about on the interval
[2, 2.25]?

(d) If we wanted to approximate the velocity at the instant t = 2, what would be your
best estimate for this instantaneous velocity?



Derivatives Graphically and Numerically (DF1)

Observation 2.1.2 If we want to study the velocity at the instant t = 2, it is helpful to study
the average velocity on small intervals around t = 2. If we consider the interval [2, 2 + h],
where h is the width of the interval, the average velocity is given by the difference quotient

f(2 + h)− f(2)

(2 + h)− 2
=

f(2 + h)− f(2)

h
.



Derivatives Graphically and Numerically (DF1)

Observation 2.1.3 We want to be able to consider intervals before and after t = 2. A
positive value of h will give an interval after t = 2. For example, the interval [2, 3] corresponds
to h = 1. A negative value of h will give an interval before t = 2. For example, the interval
[1, 2] corresponds to h = −1. In the formula above, it looks like the interval would be [2, 1],
but the standard notation in an interval is to write the smallest number first. This does not
change the difference quotient because

f(2 + h)− f(2)

(2 + h)− 2
=

f(2)− f(2 + h)

2− (2 + h)
.



Derivatives Graphically and Numerically (DF1)

Activity 2.1.4 Consider the height of the ball falling under gravity as in Table 37 .

(a) What was the average velocity on the interval [2, 2 + h] for h = 1 and h = −1?

(b) What was the average velocity on the interval [2, 2 + h] for h = 0.5 and h = −0.5?

(c) What was the average velocity on the interval [2, 2 + h] for h = 0.25 and h = −0.25?

(d) What is your best estimate for the limiting value of these velocities as h → 0? Notice
that this is your estimate for the instantaneous velocity at t = 2!



Derivatives Graphically and Numerically (DF1)

Definition 2.1.5 The instanteous velocity at t = a is the limit as h → 0 of the difference
quotient f(a+ h)− f(a)

h
. In the activity above the instantaneous velocity at t = 2 is given

by the limit
v(2) = lim

h→0

f(2 + h)− f(2)

h

♢



Derivatives Graphically and Numerically (DF1)

Definition 2.1.6 The slope of the secant line to f(x) through the points x = a and x = b
is given by the difference quotient

f(b)− f(a)

b− a
.

♢



Derivatives Graphically and Numerically (DF1)

Activity 2.1.7 In this activity you will study the slope of a graph at a point. The graph of
the function g(x) is given below. For your convenience, below you will find a table of values
for g(x).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−2
−1.5
−1

−0.5

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

x

y

Figure 32 The graph of g(x)
Table 33

x 1 1.5 2 2.5 3
g(x) -1.5 -0.875 0 1.125 2.5

(a) What is the slope of the line through (1, g(1)) and (2, g(2))? Draw this line on the
graph of g(x).

(b) What is the slope of the line through (1.5, g(1.5)) and (2, g(2))? Draw this line on the
graph of g(x).

(c) Draw the line tangent to g(x) at x = 2. What would be your best estimate for the
slope of this tangent line?

(d) Notice that the slope of the tangent line at x = 2 is positive. What feature of the graph
of f(x) around x = 2 do you think causes the tangent line to have positive slope?

A. The function f(x) is concave up
B. The function f(x) is increasing

C. The function f(x) is concave down
D. The function f(x) is decreasing



Derivatives Graphically and Numerically (DF1)

Observation 2.1.8 The slope of the secant line to f(x) through the points x = a and x = b

is given by the difference quotient f(b)− f(a)

b− a
. As the point x = b gets closer to x = a, the

slope of the secant line tends to the slope of the tangent line. In symbols, the slope at x = a
is given by the limit

lim
x→a

f(x)− f(a)

x− a
.

Letting b = a+ h, we can also say that the slope of the tangent line at x = a is given by the
limit

lim
h→0

f(a+ h)− f(a)

h
.



Derivatives Graphically and Numerically (DF1)

Definition 2.1.9 The derivative of f(x) at x = a, denoted f ′(a), is given by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

♢



Derivatives Graphically and Numerically (DF1)

Observation 2.1.10 In Activity 2.1.1 and Activity 2.1.4 you studied a ball falling under
gravity and estimated the instantaneous velocity as a limiting value of average velocities
on smaller and smaller intervals. Drawing the corresponding secant lines, we see how the
secant lines approximate better the tangent line, showing graphically what we previouly saw
numericaly. Here is a Desmos animation showing the secant lines approaching the tangent
line https://www.desmos.com/calculator/bzs1bxz7fa.

https://www.desmos.com/calculator/bzs1bxz7fa


Derivatives Graphically and Numerically (DF1)

Activity 2.1.11 Suppose that the function f(x) gives the position of an object at time x.
Which of the following quantities are the same? Select all that apply!

A. The value of the derivative of f(x) at
x = a

B. The slope of the tangent line to f(x) at
x = a

C. The instantaneous velocity of the object

at x = a

D. The difference quotient f(a+ h)− f(a)

h

E. The limit lim
h→0

f(a+ h)− f(a)

h



Derivatives Graphically and Numerically (DF1)

Observation 2.1.12 We can use the difference quotient f(a+ h)− f(a)

h
for small values of

h to estimate f ′(a), the value of the derivative at x = a.



Derivatives Graphically and Numerically (DF1)

Activity 2.1.13 Suppose that you know that the function g(x) has values g(−0.5) = 7,
g(0) = 4, and g(0.5) = 2. What is your best estimate for g′(0)?

A. g′(0) ≈ −3

B. g′(0) ≈ −2

C. g′(0) ≈ −6

D. g′(0) ≈ −4

E. g′(0) ≈ −5



Derivatives Graphically and Numerically (DF1)

Activity 2.1.14 Suppose that you know that the function f(x) has value f(1) = 3 and has
derivative at x = 1 given by f ′(1) = 2. Which of the following scenarios is most likely?

A. f(2) = 3 because the function is con-
stant

B. f(2) = 2 because the derivative is con-
stant

C. f(2) ≈ 1 because the function’s output

decreases by about 2 units for each in-
crease by 1 unit in the input

D. f(2) ≈ 5 because the function’s output
increases by about 2 units for each in-
crease by 1 unit in the input



Derivatives Graphically and Numerically (DF1)

Observation 2.1.15 We can use the derivative at x = a to estimate the increase/decrease
of the function f(x) close to x = a. A positive derivative at x = a suggests that the
output values are increasing around x = a approximately at a rate given by the value of the
derivative. A negative derivative at x = a suggests that the output values are decreasing
around x = a approximately at a rate given by the value of the derivative.



Derivatives Graphically and Numerically (DF1)

Activity 2.1.16 In this activity you will study the abolute value function f(x) = |x|. The
absolute value function is a piecewise defined function which outputs x when x is positive
(or zero) and outputs −x when x is negative. So the absolute value always outputs a number
which is positive (or zero). Here is the graph of this function.

−4 −3 −2 −1 1 2 3 4

1

2

3

4

x

y

Figure 34 The graph of |x|

(a) What do you think is the slope of the function for any x value smaller than zero?

A. 0
B. 1

C. -1
D. DNE

(b) What do you think is the slope of the function for any x value greater than zero?

A. 0
B. 1

C. -1
D. DNE

(c) What do you think is the slope of the function at zero?

A. 0
B. 1

C. -1
D. DNE



Derivatives Graphically and Numerically (DF1)

Observation 2.1.17 Because the derivative at a point is defined in terms of a limit, the
quantity f ′(a) might not exist! In that case we say that f(x) is not differentiable at x = a.
This might happen when the slope on the left of the point is different from the slope on the
right, like in the case of the absolute value function. We call this behavior a corner in the
graph.
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Activity 2.1.18 Consider the graph of function h(x).

−2 −1 1 2 3 4 5 6 7

−1

1

x

y

Figure 35 The graph of h(x).

(a) For which of the following points a is h′(a) positive? Select all that apply!

A. -1
B. 1
C. 2

D. 5

E. 6

(b) For which of the following points a is h′(a) negative? Select all that apply!

A. -1
B. 1
C. 2

D. 5

E. 6

(c) For which of the following points a is h′(a) zero? Select all that apply!

A. -1
B. 1
C. 2

D. 5

E. 6

(d) For which of the following points a the quantity h′(a) does NOT exist? Select all that
apply!

A. -1
B. 1
C. 2

D. 5

E. 6



Derivatives Graphically and Numerically (DF1)

Activity 2.1.19 Sketch the graph of a function f(x) that satisfies the following criteria.
(You do not need to define the function algebraically.)

• Defined and continuous on the interval [−5, 5].

• f ′(x) does not exist at x = 0

• lim
h→0

f(2 + h)− f(2)

h
< 0

• The slope tangent to the graph of f(x) at x = 3 is zero

• The rate of change of f(x) when x = −1 is positive



Derivatives Graphically and Numerically (DF1)

Activity 2.1.20 You are given the graph of the function f(x).

−1 −0.5 0.5 1 1.5 2 2.5 3

−7

−6

−5

−4

−3

−2

−1

1
x

y

Figure 36 The graph of f(x)

(a) Using the graph, estimate the slope of the tangent line at x = 2. Make sure you can
carefully describe your process for obtaining this estimate!

(b) If you call your approximation for the slope m, which one of the following expression
gives you the equation of the tangent line at x = 2?

A. y − 2 = m(x− 2)

B. y + 2 = m(x− 2)

C. y − 2 = m(x+ 2)

D. y + 2 = m(x+ 2)

(c) Find the equation of the tangent line at x = 2.



Derivatives Analytically (DF2)

2.2 Derivatives Analytically (DF2)

Learning Outcomes
• Find derivatives using the definition of derivative as a limit.



Derivatives Analytically (DF2)

Observation 2.2.1 Recall that f ′(a), the derivative of f(x) at x = a, was defined as the
limit as h → 0 of the difference quotient on the interval [a, a + h] as in Definition 2.1.9. If
f ′(a) exists, then we say that f(x) is differentiable at a. If for some open interval (a, b), we
have that f ′(x) exists for every point x in (a, b), then we say that f(x) is differentiable on
(a, b).



Derivatives Analytically (DF2)

Activity 2.2.2 For the function f(x) = x − x2 use the limit definition of the derivative at
a point to compute f ′(2).

A. f ′(2) = lim
h→0

(2 + h)− (2 + h)2 − 2 + 4

h
= −3

B. The limit f ′(2) = lim
h→0

(2 + h)− (2 + h)2 − 2

h
simplifies algebraically to lim

h→0

−3h− h2

h
which does not exist, thus f ′(2) is not defined.

C. The limit f ′(2) = lim
h→0

(2 + h)− (2 + h)2 − 2

h
simplifies algebraically to lim

h→0

h− h2

h
which does not exist, thus f ′(2) is not defined.

D. f ′(2) = lim
h→0

(2 + h)− (22 + h2)− 2 + 4

h
= 1



Derivatives Analytically (DF2)

Activity 2.2.3 Consider the function f(x) = 3−2x. Which of the following best summarizes
the average rates of changes of on f on the intervals [1, 4], [3, 7], and [5, 5 + h]?

A. The average rate of change on the in-
tervals [1, 4] and [3, 7] are equal to the
slope of f(x), but the average rate of
change of f cannot be determined on
[5, 5 + h] without a specific value of h.

B. The average rate of change on the in-

tervals [1, 4], [3, 7], and [5, 5+ h] are all
different values.

C. The average rate of change on the in-
tervals [1, 4], [3, 7], and [5, 5+ h] are all
equal to −2.



Derivatives Analytically (DF2)

Activity 2.2.4 Can you find f ′(π) when f(x) = 3− 2x without doing any computations?

A. No, because we cannot compute the value f(π).

B. No, because we cannot compute the average rate of change on the interval [π, π + h].

C. Yes, f ′(π) = 3 because the intercept of the tangent line at any point is equal to the
constant intercept of f(x).

D. Yes, f ′(π) = −2 because the slope of the tangent line at any point is equal to the
constant slope of f(x).



Derivatives Analytically (DF2)

Definition 2.2.5 Let f(x) be function that is differentiable on an open interval (a, b). The
derivative function of f(x), denoted f ′(x), is given by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

At any particular input x = a, the derivative function outputs f ′(a), the value of derivative
at the point x = a. ♢



Derivatives Analytically (DF2)

Remark 2.2.6 To specify the indendent variable of our function, we say that f ′(x) is the
derivative of f(x) with respect to x. For the derivative function of y = f(x) we also use the
notation:

f ′(x) = y′(x) =
dy

dx
=

df

dx
.

The last type of notation is known as differential (or Leibniz) notation for the derivative.



Derivatives Analytically (DF2)

Remark 2.2.7 Notice that our notation for the derivative function is based on the name
that we assign to the function along with our choice of notation for indendent and dependent
variables. For example, if we have a differentiable function y = v(t), the derivative function
of v(t) with respect to t can be written as v′(t) = y′(t) =

dy

dt
=

dv

dt
.



Derivatives Analytically (DF2)

Activity 2.2.8 In this activity you will consider f(x) = −x2 +4 and compute its derivative
function f ′(x) using the limit definition of the derivative function Definition 2.2.5.

(a) What expression do you get when you simplify the difference quotient

f(x+ h)− f(x)

h
=

(−(x+ h)2 + 4)− (−x2 + 4)

h
?

A. x2 + h2 + 4− x2 − 4

h
=

h2

h

B. −x2 − h2 + 4 + x2 − 4

h
=

−h2

h

C. −x2 − 2xh− h2 + 4 + x2 − 4

h
=

−2xh− h2

h

D. x2 + 2xh+ h2 + 4− x2 − 4

h
=

2xh+ h2

h

(b) After taking the limit as h → 0, which of the following is your result for the derivative
function f ′(x)?

A. f ′(x) = x

B. f ′(x) = −x

C. f ′(x) = 2x

D. f ′(x) = −2x
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Activity 2.2.9 Using the limit definition of the derivative, find f ′(x) for f(x) = −x2+2x−4.
Which of the following is an accurate expression for f ′(x)?

A. f ′(x) = 2x+ 2

B. f ′(x) = −2x

C. f ′(x) = −2x+ 2

D. f ′(x) = −2x− 2



Derivatives Analytically (DF2)

Activity 2.2.10 Using the limit definition of the derivative, you want to find f ′(x) for
f(x) = 1

x
. We will do this by first simplifying the difference quotient and then taking the

limit as h → 0.

(a) What expression do you get when you simplify the difference quotient

f(x+ h)− f(x)

h
=

1
x+h

− 1
x

h
?

A.
1

x+h

h
=

1

(x+ h)h

B.
h

x+h

h
=

h

h(x+ h)

C.
x−(x+h)
(x+h)x

h
=

−h

h(x+ h)x

D.
x−(x+h)
(x+h)x

h
=

−h2

(x+ h)x

E.
h

(x+h)x

h
=

h

h(x+ h)x

(b) After taking the limit as h → 0, which of the following is your result for the derivative
function f ′(x)?

A. f ′(x) = 0

B. f ′(x) = 1/x

C. f ′(x) = −1/x

D. f ′(x) = 1/x2

E. f ′(x) = −1/x2
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Activity 2.2.11 Find f ′(x) using the limit definition of the derivative. Then evaluate at
x = 8.

f(x) = x2 − 5x− 5



Derivatives Analytically (DF2)

Definition 2.2.12 Once we have computed the first derivative f ′(x), the second derivative
of f(x) is the first derivative of f ′(x) or

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
.

♢
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Activity 2.2.13 Consider the function f(x) = −x2 + 2x− 4. Earlier you saw that f ′(x) =
−2x+ 2. What is the second derivative of f(x)?

A. f ′′(x) = 2

B. f ′′(x) = −2

C. f ′′(x) = 2x

D. f ′′(x) = −2x
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Remark 2.2.14 The first derivative encodes information about the rate of change of the
original function. In particular,

• If f ′ > 0, then f is increasing;

• If f ′ < 0, then f is decreasing;

• If f ′ = 0, then f has a horizontal tangent line (and it might have a max or min or it
might just be changing pace).

The second derivative is the derivative of the derivative. It encodes information about
the rate of change of the rate of change of the original function. In particular,

• If f ′′ > 0, then f ′ is increasing;

• If f ′′ < 0, then f ′ is decreasing;

• If f ′′ = 0, then f ′ has a horizontal tangent line (and it might have a max or min or it
might just be changing pace).
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Activity 2.2.15 Consider the function f(x) = −x2 + 2x− 4. Earlier you saw that f ′(x) =
−2x+ 2 and f ′′(x) = −2. What does this tell you about the graph of f(x) for x > 1?

A. The graph is increasing and concave up

B. The graph is increasing and concave
down

C. The graph is decreasing and concave up

D. The graph is decreasing and concave
down
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Observation 2.2.16 We have two ways to compute analytically the derivative at a point.
For example, to compute f ′(1), the derivative of f(x) at x = 1, we have two methods

1. We can directly compute f ′(1) by finding the difference quotient on the interval [1, 1+h]
and then taking the limit as h → 0.

2. We can first find the derivative function f ′(x) by computing the difference quotient
on the interval [x, x + h], then taking the limit as h → 0, and finally evaluating the
expression for f ′(x) at the input x = 1.

The latter approach is more convenient when you want to consider the value of the derivative
function at multiple points!
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Activity 2.2.17 Consider the function f(x) =
1

x2
. You will find f ′(1) in two ways!

(a) Using the limit definition of the derivative at a point, compute the difference quotient
on the interval [1, 1 + h] and then take the limit as h → 0. What do you get?

A. -1
B. 1

C. 2
D. -2

(b) Now, using the limit definition of the derivative function, find f ′(x). Which of the
following is your result for the derivative function f ′(x)?

A. f ′(x) = −1/x3

B. f ′(x) = 1/x3

C. f ′(x) = −2/x3

D. f ′(x) = 2/x3

(c) Make sure that your answers match! So if you plug in x = 1 in f ′(x), you should get
the same number you got when you computed f ′(1).
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Activity 2.2.18 In this activity you will study (again!) the velocity of a ball falling under
gravity. A ball is tossed vertically in the air from a window. The height of the ball (in feet) is
given by the formula f(t) = 64− 16(t− 1)2, where t is the seconds after the ball is launched.
Recall that in Activity 2.1.1, you used numerical methods to approxmiate the instantaneous
velocity of f(t) to calculate v(2)!

(a) Using the limit definition of the derivative function, find the velocity function v(t) =
f ′(t).

(b) Using the velocity function v(t), what is v′(1), the instantaneous velocity at t = 1?

A. -32 feet per second
B. 32 feet per second
C. 0 feet per second

D. -16 feet per second

E. 16 feet per second

(c) What behavior would explain your finding?

A. After 1 second the ball is falling at a
speed of 32 meters per second.

B. After 1 second the ball is moving up-
wards at a speed of 32 meters per sec-
ond.

C. After 1 second the ball reaches its
highest point and it stops for an in-

stant.

D. After 1 second the ball is falling at a
speed of 16 meters per second.

E. After 1 second the ball is moving up-
wards at a speed of 16 meters per sec-
ond.
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Observation 2.2.19 A function can only be differentiable at x = a if it is also continuous
at x = a. But not all continuous functions are differentiable: when we have a corner in
the graph of a the function, the function is continuous at the corner point, but it is not
differentiable at that point!
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Activity 2.2.20 In Observation 2.1.17, we said that a function is not differentiable when the
limit that defines it does not exist. In this activity we will study differentiability analytically.

(a) Consider the following continuous function

g(x) =

{
x+ 2 x ≤ 2

x2 x > 2

Consider the interval [2, 2+h]. When h < 0, the interval falls under the first definition
of g(x) and the derivative is always equal to 1. What is the derivative function for x
values greater than 2? Show that at x = 2 the value of this derivative is not equal to
1 and so g(x) is not differentiable at x = 2.

(b) Consider the following discontinuous function

g(x) =

{
x+ 2 x ≤ 2

x x > 2

On both sides of x = 2 it seems that the slope is the same, but this function is
still not differentiable at x = 2. Notice that g(2) = 4. When h > 0, the interval
[2, 2+h]falls under the second definition of g(x), but g(2) is always fixed at 4. Compute
the difference quotient g(2+h)−g(2)

h
assuming that h > 0 and notice that this does not

simplify as expected! Moreover, if you take the limit as h → 0, you will get infinity
and not the expected slope of 1!

(c) Consider the following function

g(x) =

{
ax+ 2 x ≤ 2

bx2 x > 2

where a, b are some nonzero parameters you will find. Find an equation in a, b that
needs to be true if we want the function to be continuous at x = 2. Also, find an
equation in a, b that needs to be true if we want the function to be differentiable at
x = 2. Solve the system of two linear equations... you should find that a = −2 and
b = −1/2 are the only values that make the function differentiable (and continuous!).



Elementary Derivative Rules (DF3)

2.3 Elementary Derivative Rules (DF3)

Learning Outcomes
• Compute basic derivatives using algebraic rules.



Elementary Derivative Rules (DF3)

Observation 2.3.1 We know how to find the derivative function using the limit definition
of the derivative. From the activities in the previous section, we have seen that this process
gets cumbersome when the functions are more complicated. In this section we will discuss
shortcuts to calculate derivatives, known as “differentiation rules”.



Elementary Derivative Rules (DF3)

Activity 2.3.2 In this activity we will try to deduce a rule for finding the derivative of a
power function. Note, a power function is a function of the form f(x) = xn where n is any
real number.

(a) Using the limit definition of the derivative, what is f ′(x) for the power function f(x) =
x?

A. -1
B. 1

C. 0
D. Does not exist

(b) Using the limit definition of the derivative, what is f ′(x) for the power function f(x) =
x2?

A. 0
B. −2x

C. 2x

D. 2x+ 1

(c) Using the limit definition of the derivative, what is f ′(x) for the power function f(x) =
x3?

A. 3x2

B. −3x2

C. 3x2 − 3x

D. −3x2 + 3x

(d) WITHOUT using the limit definition of the derivative, what is your best guess for
f ′(x) when f(x) = x4? (See if you can find a pattern from the first three tasks of this
activity.)

A. 3x2

B. 3x3

C. 4x2

D. 4x3



Elementary Derivative Rules (DF3)

Observation 2.3.3 We have been using f ′(x), read “f prime”, to denote a derivative of
the function f(x). There are other ways to denote the derivative of y = f(x): y′ or df

dx
,

pronounced “dee-f dee-x”. If you want to take the derivative of f ′(x), y′, or df

dx
to get the

second derivative of f(x), the notation is f ′′(x), y′′, or d2f

dx2
.



Elementary Derivative Rules (DF3)

Activity 2.3.4 Using Theorem 2.3.3, which of the following statement(s) are true? For
those statements that are wrong, give the correct derivative.

A. The derivative of y = x10 is y′ = 10x11.

B. The derivative of y = x−8 is y′ =
−8x−9.

C. The derivative of y = x100 is y′ =
100x99.

D. The derivative of y = x−17 is y′ =
−17x−16.



Elementary Derivative Rules (DF3)

Activity 2.3.5 Using Theorem 2.3.6, which of the following statement(s) are true? Note:
Pay attention to the independent variable (the input) of the function.

A. The derivative of y(x) = 10 is y′(x) = 9.

B. The derivative of y(t) = x is y′(t) = 0.

C. The derivative of y(a) = x2 is y′(a) =

2x.

D. The derivative of y(x) = −5 is y′(x) =
−4.



Elementary Derivative Rules (DF3)

Activity 2.3.6 What is the derivative of the function y(x) = 12x2/3?

A. y′(x) = 8x5/3.

B. y′(x) = 18x−1/3.

C. y′(x) = 8x−1/3.

D. y′(x) = 18x5/3.



Elementary Derivative Rules (DF3)

Activity 2.3.7 What are the first and second derivatives for the arbitrary quadratic function
given by f(x) = ax2 + bx+ c, where a, b, c are any real numbers?

A. f ′(x) = 2ax+ bx+ c, f ′′(x) = 2a+ b.

B. f ′(x) = 2x+ 1, f ′′(x) = 2.

C. f ′(x) = 2ax+ b, f ′′(x) = 2a.

D. f ′(x) = ax+ b, f ′′(x) = a.



Elementary Derivative Rules (DF3)

Activity 2.3.8 We can look at power functions with fractional exponents like f(x) = x
1
4 =

4
√
x or with negative exponents like g(x) = x−4 =

1

x4
. What is the derivative of these two

functions?

A. f ′(x) =
1

4
4
√
x3

, g′(x) =
−4

x3
.

B. f ′(x) =
1

4

4
√
x3, g′(x) =

−4

x5
.

C. f ′(x) =
1

4

4
√
x3, g′(x) =

−4

x3
.

D. f ′(x) =
1

4
4
√
x3

, g′(x) =
−4

x5
.



Elementary Derivative Rules (DF3)

Observation 2.3.9 A special case of Theorem 2.3.13 is when b = e, where e is the base of
the natural logarithm function. In this case let f(x) = ex. Then

f ′(x) = ln(e) ex = ex.

So f(x) = ex is a special function for which f ′(x) = f(x).



Elementary Derivative Rules (DF3)

Activity 2.3.10 The first derivative of the function g(x) = xe + ex is given by g′(x) =
exe−1 + ex. What is the second derivative of g(x)?

A. g′′(x) = xe + ex.

B. g′′(x) = e(e− 1)xe−2 + ex.

C. g′′(x) = exe−1 + ex.

D. g′′(x) = ex.



Elementary Derivative Rules (DF3)

Activity 2.3.11 The derivative of f(x) = 7 sin(x) + 2ex + 3x1/3 − 2 is,

A. f ′(x) = 7 cos(x) + 2ex + x−2/3 − 2x.

B. f ′(x) = 7 cos(x) + 2ex +−2x−2/3 − 2.

C. f ′(x) = −7 sin(x) + ex + x−2/3.

D. f ′(x) = −7 cos(x) + 2ex ln(x) + x−2/3.

E. f ′(x) = 7 cos(x) + 2ex + x−2/3.



Elementary Derivative Rules (DF3)

Activity 2.3.12 Which of the following statements is NOT true?

A. The derivative of y = 2 ln(x) is y′ =
2

x
.

B. The derivative of y =
ln(x)
2

is y′ =
1

2x
.

C. The derivative of y =
2

3
ln(x) is y′ =

3

2x
.

D. The derivative of y = ln(x2) is y′ =
2

x
.



Elementary Derivative Rules (DF3)

Activity 2.3.13 Demonstrate and explain how to find the derivative of the following func-
tions. Be sure to explicitly denote which derivative rules (scalar multiple, sum/difference,
etc.) you are using in your work.

(a)
g(x) = 2 cos (x)− 3 ex

(b)
h(w) =

5
√
w7 +

6

w5

(c)
f(t) = −4 t5 + 5 t3 + t− 8



Elementary Derivative Rules (DF3)

Activity 2.3.14 Suppose that the temperature (in degrees Fahrenheit) of a cup of coffee, t
minutes after forgetting it on a bench outside, is given by the function

f(t) = 40 (0.5)t + 50

Find f(1) and f ′(1) and try to interpret your result in the context of this problem.



Elementary Derivative Rules (DF3)

Activity 2.3.15 In this activity you will use our first derivative rules to study the slope of
tangent lines.

(a) The graph of y = x3−9x2−16x+1 has a slope of 5 at two points. Find the coordinates
of these points.

(b) Find the equations of the two lines tangent to the parabola y = (x − 2)2 which pass
through the origin. You will want to think about slope in two ways: as the derivative
at x = a and the rise over the run in a linear function through the origin and the point
(a, f(a)). Use a graph to check your work and sketch the tangent lines on your graph.



Elementary Derivative Rules (DF3)

Activity 2.3.16 Find the values of the parameters a, b, c for the quadratic polynomial
q(x) = ax2 + bx + c that best approximates the graph of f(x) = ex at x = 0. This means
choosing a, b, c such that

• q(0) = f(0)

• q′(0) = f ′(0)

• q′′(0) = f ′′(0)

Hint: find the values of f(0), f ′(0), f ′′(0). The values of q(0), q′(0), q′′(0) at zero will involve
some parameters. You can solve for these parameters using the equations above.



The Product and Quotient Rules (DF4)

2.4 The Product and Quotient Rules (DF4)

Learning Outcomes
• Compute derivatives using the Product and Quotient Rules.



The Product and Quotient Rules (DF4)

Activity 2.4.1 Let f and g be the functions defined by

f(t) = 2t2 , g(t) = t3 + 4t.

(a) Find f ′(t) and g′(t).

(b) Let P (t) = 2t2 (t3 + 4t) and observe that P (t) = f(t) · g(t). Rewrite the formula for P
by distributing the 2t2 term. Then, compute P ′(t) using the power, sum, and scalar
multiple rules.

(c) True or false: P ′(t) = f ′(t) · g′(t).



The Product and Quotient Rules (DF4)

Activity 2.4.2 The product rule is a powerful tool, but sometimes it isn’t necessary; a more
elementary rule may suffice. For which of the following functions can you find the derivative
without using the product rule? Select all that apply.

A. f(x) = ex sinx

B. f(x) =
√
x(x3 + 3x− 3)

C. f(x) = (4)(x5)

D. f(x) = x lnx



The Product and Quotient Rules (DF4)

Activity 2.4.3 Find the derivative of the following functions using the product rule.

(a) f(x) = (x2 + 3x) sinx

(b) f(x) = ex cosx

(c) f(x) = x2 lnx



The Product and Quotient Rules (DF4)

Activity 2.4.4 Let f and g be the functions defined by

f(t) = 2t2 , g(t) = t3 + 4t.

(a) Determine f ′(t) and g′(t). (You found these previously in Activity 2.4.1.)

(b) Let Q(t) =
t3 + 4t

2t2
and observe that Q(t) =

g(t)

f(t)
. Rewrite the formula for Q by

dividing each term in the numerator by the denominator and use rules of exponents
to write Q as a sum of scalar multiples of power functions. Then, compute Q′(t) using
the sum and scalar multiple rules.

(c) True or false: Q′(t) =
g′(t)

f ′(t)
.



The Product and Quotient Rules (DF4)

Activity 2.4.5 Just like with the product rule, there are times when we can find the
derivative of a quotient using elementary rules rather than the quotient rule. For which
of the following functions can you find the derivative without using the quotient rule? Select
all that apply.

A. f(x) =
6

x3

B. f(x) =
2

lnx

C. f(x) =
ex

sinx

D. f(x) =
x3 + 3x

x



The Product and Quotient Rules (DF4)

Activity 2.4.6 Find the derivative of the following functions using the quotient rule (or, if
applicable, an elementary rule).

(a) f(x) =
6

x3

(b) f(x) =
2

lnx

(c) f(x) =
ex

sinx

(d) f(x) =
x3 + 3x

x



The Product and Quotient Rules (DF4)

Activity 2.4.7 Demonstrate and explain how to find the derivative of the following functions.
Be sure to explicitly denote which derivative rules (product, quotient, sum and difference,
etc.) you are using in your work.

(a)

f(w) = −3w2 + 5w − 2

sin (w)

(b)

g(t) =
t2 + 6 t+ 1

t2

(c)
h(t) = −2

(
t2 + 3 t+ 3

)
cos (t)



The Product and Quotient Rules (DF4)

Note 2.4.8 We have found the derivatives of sinx and cos x, but what about the other
trigonometric functions? It turns out that the quotient rule along with some trig identities
can help us! (See Khan Academy1 for a reminder of trig identities.)

1KhanAcademy.org

https://www.khanacademy.org/math/trigonometry/trig-equations-and-identities/using-trig-identities/a/trig-identity-reference


The Product and Quotient Rules (DF4)

Activity 2.4.9 Consider the function f(x) = tanx, and remember that tanx =
sinx

cosx .

(a) What is the domain of f?

(b) Use the quotient rule to show that one expression for f ′(x) is

f ′(x) =
(cosx)(cosx) + (sinx)(sinx)

(cosx)2 .

(c) Which trig identity might be useful here to simplify this expression? How can this
identity be used to find a simpler form for f ′(x)?

(d) Recall that secx =
1

cosx . How can we express f ′(x) in terms of the secant function?

(e) For what values of x is f ′(x) defined? How does this domain compare to the domain
of f?



The Product and Quotient Rules (DF4)

Activity 2.4.10 Let g(x) = cotx, and recall that cot x =
cosx
sinx

.

(a) What is the domain of g(x)?

(b) Use the quotient rule to develop a formula for g′(x) that is expressed completely in
terms of sinx and cos x.

(c) Use other relationships among trigonometric functions to write g′(x) only in terms of
the cosecant function.

(d) What is the domain of g′(x)? How does this domain compare to the domain of g′(x)?



The Product and Quotient Rules (DF4)

Activity 2.4.11 Let h(x) = secx, and recall that secx =
1

cosx .

(a) What is the domain of h(x)?

(b) Use the quotient rule to develop a formula for h′(x) that is expressed completely in
terms of sinx and cos x.

(c) Use other relationships among trigonometric functions to write h′(x) only in terms of
the the tangent and secant functions.

(d) What is the domain of h′(x)? How does this domain compare to the domain of h′(x)?



The Product and Quotient Rules (DF4)

Activity 2.4.12 Let p(x) = cscx, and recall that cscx =
1

sinx
.

(a) What is the domain of p(x)?

(b) Use the quotient rule to develop a formula for p′(x) that is expressed completely in
terms of sinx and cos x.

(c) Use other relationships among trigonometric functions to write h′(x) only in terms of
the the cotangent and cosecant functions.

(d) What is the domain of p′(x)? How does this domain compare to the domain of p′(x)?



The Product and Quotient Rules (DF4)

Activity 2.4.13 Consider the functions

f(x) = 3 cos (x) , g(x) = x2 + 3 ex

and the function h(x) for which a table of values is given.

x −1 0 2

h(x) −4 −1 3

h′(x) 0 −1 1

In answering the following questions, be sure to explicitly denote which derivative rules
(product, quotient, sum/difference, etc.) you are using in your work.

(a) Find the derivative of f(x) · g(x).

(b) Find the derivative of f(x)

g(x)
.

(c) Find the value of the derivative of f(x) · h(x) at x = −1.

(d) Find the value of the derivative of g(x)

h(x)
at x = 0.

(e) Consider the function
r(x) = 3 cos (x) · x.

Find r′(x), r′′(x), r′′′(x), and r(4)(x) so the first, second, third, and fourth derivative
of r(x). What pattern do you notice? What do you expect the twelfth derivative of
r(x) to be?



The Product and Quotient Rules (DF4)

Activity 2.4.14

(a) Differentiate y =
ex

x
, y =

ex

x2
, y =

ex

x3
. Simplify your answers as much as possible.

(b) What do you expect the derivative of y =
ex

xn
to be? Prove your guess!

(c) What do your answers above tell you above the shape of the graph of y =
ex

xn
? Study

how the sign of the numerator and the denominator change in the first derivative to
determine when the behavior changes!



The Product and Quotient Rules (DF4)

Activity 2.4.15 The quantity q of skateboards sold depends on the selling price p of a
skateboard, so we write q = f(p). You are given that

f(140) = 15000, f ′(140) = −100

(a) What does the data provided tell you about the sales of skateboards?

(b) The total revenue, R, earned by the sale of skateboards is given by R = q · p = f(p) · p.
Explain why.

(c) Find the derivative of the revenue when p = 140, so find the value of

dR

dp

∣∣∣
p=140

.

(d) What is the sign of the quantity above? What do you think would happen to the
revenue if the price was changed from $140 to $141?



The Product and Quotient Rules (DF4)

Activity 2.4.16 Let f(v) be the gas consumption in liters per kilometer (l/km) of a car
going at velocity v kilometers per hour (km/hr). So if the car is going at velocity v, then
f(v) tells you how many liters of gas the car uses to go one kilometer. You are given the
following data

f(50) = 0.04, f ′(50) = 0.0004

(a) Let g(v) be the distance (in kilometers) that the same car covers per liter of gas at
velocity v. What are the units of the output of g(v)? Use these units to infer how to
write g(v) in terms of f(v), then find g(50) and g′(50).

(b) Let h(v) be the gas consumption over time, so the liters of gas consumed per hour by
the same car going at velocity v. What are the units of the output of h(v)? Use these
units to infer how to write h(v) in terms of f(v), then find h(50) and h′(50).

(c) How would you explain the practical meaning of your findings to a driver who knows
no calculus?



The Chain Rule (DF5)

2.5 The Chain Rule (DF5)

Learning Outcomes
• Compute derivatives using the Chain Rule.



The Chain Rule (DF5)

Note 2.5.1 When we consider the consider the composition f ◦ g of the function f with the
function g, we mean the composite function f(g(x)), where the function g is applied first
and then f is applied to the output of g. We also call f the outside function whilst g is the
inside function.



The Chain Rule (DF5)

Activity 2.5.2

(a) Consider the function f(x) = −x2 + 5 and g(x) = 2x− 1. Which of the following is a
formula for f(g(x))?

A. −4x2 + 4x+ 4

B. 4x2 − 4x+ 5

C. −2x2 + 9

D. −2x2 + 4

(b) One of the options above is a formula for g(f(x)). Which one?



The Chain Rule (DF5)

Activity 2.5.3

(a) Consider the composite function f(g(x)) =
√
ex. Which function is the outside function

f(x) and which one is the inside function g(x)?

A. f(x) = x2 , g(x) = ex

B. f(x) =
√
x , g(x) = ex

C. f(x) = ex , g(x) =
√
x

D. f(x) = ex , g(x) = x2

(b) Using properties of exponents, we can rewrite the original function as e
x
2 . Using this

new expression, what is your new inside function and your new outside function?

(c) Consider the function e
√
x. In this case, what are the inside and outside functions?



The Chain Rule (DF5)

Activity 2.5.4 In this activity we will build the intuition for the chain rule using a real-world
scenario and differential notation for derivatives. Consider the following scenario.

My neighborhood is being invaded! The squirrel population grows based on acorn avail-
ability, at a rate of 2 squirrels per bushel of acorns. Acorn availability grows at a rate of 100
bushels of acorns per week. How fast is the squirrel population growing per week?

(a) The scenario gives you information regarding the rate of growth of s(a), the squirrel
population as a function of acorn availability (measured in bushels). What is the
current value of ds

da
?

A. 2
B. 100

C. 200
D. 50

(b) The scenario gives you information regarding the rate of growth of a(t), the acorn
availability as a function of time (measured in weeks). What is the current value of
da

dt
?

A. 2
B. 100

C. 200
D. 50

(c) Given all the information provided, what is your best guess for the value of ds

dt
, the

rate at which the squirrel population is growing per week?

A. 2
B. 100

C. 200
D. 50

(d) Given your answers above, what is the relationship between ds

da
,
da

dt
,
ds

dt
?



The Chain Rule (DF5)

Activity 2.5.5

(a) Consider the function f(x) = −x2 + 5 and g(x) = 2x − 1. Notice that f(g(x)) =
−4x2 + 4x + 4. Which of the following is the derivative function of the composite
function f(g(x))?

A. −8x+ 4

B. −4x

C. −2x

D. 2

(b) One of the options above is a formula for f ′(x) · g′(x). Which one? Notice that this is
not the same as the derivative of f(g(x))!



The Chain Rule (DF5)

Activity 2.5.6 Consider the composite function h(x) =
√
ex = e

x
2 . For each of the two

expressions, find the derivative using the chain rule. Which of the following expressions are
equal to h′(x)? Select all!

A. 1

2
(ex)

−1
2 · ex

B. 1

2
(ex)

3
2 · ex

C. 1

2
e

−x
2

D. e
x
2 · 1

2

E. 1

2

√
ex

F.
√
ex · ex



The Chain Rule (DF5)

Activity 2.5.7 Below you are given the graphs of two functions: a(x) and b(x). Use the
graphs to compute vaules of composite functions and of their derivatives, when possible
(there are points where the derivative of these functions is not defined!). Notice that to
compute the derivative at a point, you first want to find the derivative as a function of x
and then plug in the input you want to study.

−4 −2 2 4

−2

2
a(x)

x

y

−4 −2 2 4

−2

2
b(x)

x

y

Figure 37 The graphs of a(x) and b(x)

(a) Notice that the derivative of a ◦ b is given by a′(b(x)) · b′(x), so the derivative of a ◦ b
at x = 4 is given by the quantity a′(b(4)) · b′(4) = a′(−2) · b′(4), because b(4) = −2.
Using the graphs to compute slopes, what is the derivative of a ◦ b at x = 4?

A. 0

B. −1

C. 1

D. -2

E. 2
F. The derivative does not exist at this

point.

(b) Which of the following values is the derivative of a ◦ b at x = 2?

A. 0

B. −1

C. 1

D. -2

E. 2
F. The derivative does not exist at this

point.

(c) Which of the following values is the derivative of b ◦ a (different order!) at x = −2?

A. 0

B. −1

C. 1

D. -2

E. 2
F. The derivative does not exist at this

point.



The Chain Rule (DF5)

Activity 2.5.8 In this activity you will study the derivative of cosn(x) for different powers
n.

(a) Consider the function cos2(x) = (cos(x))2. Combining power and chain rule, what do
you get if you differentiate cos2(x)?

A. − cos2(x) sin(x)
B. − cos2(x) sin(x)

C. 2 cos(x) sin(x)
D. −2 cos(x) sin(x)

(b) Consider the function cos3(x). Find its derivative.

(c) Consider the function cosn(x), for n any number. Find the general formula for its
derivative.



The Chain Rule (DF5)

Activity 2.5.9 In this activity you will study the derivative of bcos(x) for different bases b.

(a) Consider the function ecos(x). Combining exponential and chain rule, what do you get
if you differentiate ecos(x)?

A. ecos(x)

B. −ecos(x) sin(x)
C. e− sin(x)

D. ecos(x) sin(x)

(b) Consider the function 2cos(x). Find its derivative.

(c) Consider the function bcos(x), for b any positive number. Find the general formula for
its derivative.



The Chain Rule (DF5)

Remark 2.5.10 Remember that exponential and power functions obey very different differ-
entiation rules. This behavior continues when we consider composite function. The compos-
ite power function f(x)3 has derivative

3[f(x)]2 · f ′(x)

but the composite exponential function 3f(x) has derivative

ln(3) 3f(x) · f ′(x)



The Chain Rule (DF5)

Activity 2.5.11 Demonstrate and explain how to find the derivative of the following func-
tions. Be sure to explicitly denote which derivative rules (chain, product, quotient, sum/
difference, etc.) you are using in your work.

1.
f(x) = −(4x− 3 ex + 4)3

2.
k(w) = 9 cos

(
w

7
5

)
3.

h(y) = −3 sin
(
−5 y2 + 2 y − 5

)
4.

g(t) = 9 cos (t)
7
5



The Chain Rule (DF5)

Activity 2.5.12 Notice that (
f(x)

g(x)

)
=
(
f(x) · g(x)−1

)
Use this observation, the chain rule, the product rule, and the power rule (plus some fraction
algebra) to deduce the quotient rule in a new way!



The Chain Rule (DF5)

Activity 2.5.13 Remember my neighborhood squirrel invasion? The squirrel population
grows based on acorn availability, at a rate of 2 squirrels per bushel of acorns. Acorn
availability grows at a rate of 100 bushels of acorns per week. Considering this information
as pertaining to the moment t = 0, you are given the following possible model for the squirrel:

s(a(t)) = 2a(t) + 10 = 2 (50 sin(2t) + 60) + 10.

(a) Check that the model satisfies the data ds

da
= 2 and da

dt

∣∣
t=0

= 100

(b) Find the derivative function ds

dt
and check that ds

dt
|t=0 = 200.

(c) According to this model, what is the maximum and minimum squirrel population?
What is the fastest rate of increase and decrease of the squirrel population? When will
these extremal scenarions occur?



The Chain Rule (DF5)

Activity 2.5.14 Suppose that a fish population at t months is approximated by

P (t) = 100 · 40.05t

(a) Find P (10) and use units to explain what this value tells us about the population.

(b) Find P ′(10) and use units to explain what this value tells us about the population. (If
you want to avoid using a calculator, you can use the approximation ln(4) = 1.4.)



Differentiation Strategy (DF6)

2.6 Differentiation Strategy (DF6)

Learning Outcomes
• Compute derivatives using a combination of algebraic derivative rules.



Differentiation Strategy (DF6)

Activity 2.6.1 Consider the functions defined below:

f(x) = sin((x2 + 3x) cos(2x))

g(x) = sin(x2 + 3x) cos(2x)

(a) What do you notice that is similar about these two functions?

(b) What do you notice that is different about these two functions?

(c) Imagine that you are sorting functions into different categories based on how you would
differentiate them. In what category (or categories) might these functions fall?



Differentiation Strategy (DF6)

Remark 2.6.2 To take a derivative, we need to examine how the function is built and
then proceed accordingly. Below are some questions you might ask yourself as you take the
derivative of a function, especially one where multiple rules might need to be used:

1. How is this function built algebraically? What kind of function is this? What is the
big picture?

2. Where do you start?

3. Is there an easier or more convenient way to write the function?

4. Are there products or quotients involved?

5. Is this function a composition of two (or more) elementary functions? If so, what are
the outside and inside functions?

6. What derivative rules will be needed along the way?



Differentiation Strategy (DF6)

Activity 2.6.3 Consider the function f(x) = x3
√
3− 8x2.

(a) You will need multiple derivative rules to find f ′(x). Which rule would need to be
applied first? In other words, what is the big picture here?

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(b) What other rules would be needed along the way? Select all that apply.

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(c) Write an outline of the steps needed if you were asked to take the derivative of f(x).



Differentiation Strategy (DF6)

Activity 2.6.4 Consider the function f(x) =

(
lnx

(3x− 4)3

)5

.

(a) You will need multiple derivative rules to find f ′(x). Which rule would need to be
applied first? In other words, what is the big picture here?

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(b) What other rules would be needed along the way? Select all that apply.

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(c) Write an outline of the steps needed if you were asked to take the derivative of f(x).



Differentiation Strategy (DF6)

Activity 2.6.5 Consider the function f(x) = sin(cos(tan(2x3 − 1))).

(a) You will need multiple derivative rules to find f ′(x). Which rule would need to be
applied first? In other words, what is the big picture here?

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(b) What other rules would be needed along the way? Select all that apply.

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(c) Write an outline of the steps needed if you were asked to take the derivative of f(x).



Differentiation Strategy (DF6)

Activity 2.6.6 Consider the function f(x) =
x2ex

2x3 − 5x+
√
x

.

(a) You will need multiple derivative rules to find f ′(x). Which rule would need to be
applied first? In other words, what is the big picture here?

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(b) What other rules would be needed along the way? Select all that apply.

A. Chain rule
B. Power rule
C. Product rule

D. Quotient rule

E. Sum/difference rule

(c) Write an outline of the steps needed if you were asked to take the derivative of f(x).



Differentiation Strategy (DF6)

Activity 2.6.7 Find the derivative of the following functions. For each, include an explana-
tion of the steps involved that references the algebraic structure of the function.

(a) f(x) = e5x(x2 + 7x)3

(b) f(x) =

(
3x+ 1

2x6 − 1

)5

(c) f(x) =
√

cos (2x2 + x)

(d) f(x) = tan(xex)



Differentiation Strategy (DF6)

Activity 2.6.8 Demonstrate and explain how to find the derivative of the following functions.
Be sure to explicitly denote which derivative rules (constant multiple, sum/difference, etc.)
you are using in your work.

(a)
f(y) =

√
cos (6 y4 − 6 y)

(b)

g(t) =

(
5 t3 + 2

4 t4 − 3

)4

(c)
h(x) = −

(
5x4 − 7x3

)5
x

1
4



Differentiating Implicitly Defined Functions (DF7)

2.7 Differentiating Implicitly Defined Functions (DF7)

Learning Outcomes
• Compute derivatives of implicitly-defined functions.



Differentiating Implicitly Defined Functions (DF7)

Observation 2.7.1 Many of the equations that has been discussed so far fall under the
category of an explicit equation. An explicit equation is one in which the relationship between
x and y is given explicitly, such as y = f(x). In this section we will examine when the
relationship between x and y is given implicity. An implicit equation looks like f(x, y) =
g(x, y) where both sides of the equation may depend on both x and y.



Differentiating Implicitly Defined Functions (DF7)

Observation 2.7.2 Note that if we are taking the derivative of f(x) with respect to x, then

d

dx
(f(x)) = f ′(x).

However, if we are taking the derivative of g(y(x)) with respect to x, then

d

dx
(g(y)) = g′(y) · dy

dx
.



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.3 For this activity we want to find the equation of a tangent line for a circle
with radius 5 centered at the origin, x2 + y2 = 25, at the point (−3,−4).

(a) The derivative with respect to x for the equation of the circle is given by which expres-
sion.

A. 2x+ 2y
dy

dx
= 25

B. 2x+ y
dy

dx
= 0

C. 2x+ 2y
dy

dx
= 0

D. 2x+ 2
dy

dx
= 25

(b) Solving for dy

dx
gives?

A. dy

dx
=

25− 2x

2y

B. dy

dx
= −2x

y

C. dy

dx
= −x

y

D. dy

dx
=

25− 2x

2

(c) Plug the point (−3,−4) into the expression found above for the derivative to get the
slope of the tangent line.

(d) Use the value for the slope of the tangent line to obtain the equation of the tangent
line.



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.4 The curve given in Figure 50 is an example of an astroid. The equation
of this astroid is x2/3 + y2/3 = 32/3. What is the derivative with respect x for this astroid?
(Solve for dy

dx
).

Figure 38 Graph of x2/3 + y2/3 = 32/3.

A. dy

dx
=

x−1/3

y−1/3

B. dy

dx
=

y−1/3

x−1/3

C. dy

dx
=

3−1/3 − x−1/3

y−1/3

D. dy

dx
= −x−1/3

y−1/3



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.5 An example of a lemniscate is given in Figure 51. The equation of this
lemniscate is (x2 + y2)2 = x2 − y2. What is the derivative with respect x for this lemniscate?
(Solve for dy

dx
).

Figure 39 Graph of (x2 + y2)2 = x2 − y2.

A. dy

dx
=

x(1− 2(x2 + y2))

y + 2(x2 + y2)

B. dy

dx
=

x(1− 2(x2 + y2))

y(1 + 2(x2 + y2))

C. dy

dx
=

y(1 + 2(x2 + y2))

x(1− 2(x2 + y2))

D. dy

dx
=

y + 2(x2 + y2)

x(1− 2(x2 + y2))



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.6 Explain how to use implicit differentiation to find dy

dx
for each of the following

equations.

(a)
−5x5 − 5 cos (y) = 3 y4 + 2

(b)
−5 yex + 5 sin (x) = 0



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.7 To take the derivative of some explicit equations you might need to make
it an implicit equation. For this activity we will find the derivative of y = xx. Make the
equation an implicit equation by taking natural logarithm of both sides, this gives ln(y) =
x ln(x). Knowing this, what is dy

dx
? This process to find a derivative is known as logarithmic

differentiation.

A. dy

dx
= xx(ln(x) + 1)

B. dy

dx
=

(ln(x) + 1)

xx

C. dy

dx
= xx(ln(x) + x)

D. dy

dx
=

(ln(x) + x)

xx



Differentiating Implicitly Defined Functions (DF7)

Activity 2.7.8 Valerie is building a square chicken coop with side length x. Because she
needs a separate place for the rooster, she needs to put fence around the square and also
along the diagonal line shown. The fence costs $20 per linear meter, and she has a budget
of $900.

Figure 40 A diagram of the chicken coop.

(a) Which of the following equations gives the relationship between x and y? Make sure
you can explain why!

A. 20x+
80x

cos(y) = 900

B. 80x+
20x

cos(y) = 900

C. 80x+
20x

sin(y) = 900

D. 20x+
80x

sin(y) = 900

(b) If Valerie builds the coop with y = π/3 (and wants to use her whole budget), find what
side length x she needs to use.

(c) Find the slope of the curve at this point and interpret what this value tells Valerie.



Differentiating Inverse Functions (DF8)

2.8 Differentiating Inverse Functions (DF8)

Learning Outcomes
• Compute derivatives of inverse functions.



Differentiating Inverse Functions (DF8)

Remark 2.8.1 Let f−1 be the inverse function of f . The relationship between a function
and its inverse can be expressed with the identity

f(f−1(x)) = x.



Differentiating Inverse Functions (DF8)

Activity 2.8.2 In this activity you will use implicit differentiation and the inverse function
identity in Remark 2.8.1 to find the derivative of y = ln(x).

(a) Suppose that y = ln(x). Then we have that

ey = x.

Using implicit implicit differentiation, what do you get?

A. dy

dx
=

x

y

B. dy

dx
=

1

ex

C. dy

dx
=

x

ey

D. dy

dx
=

1

ey

(b) Notice that we started with the relationship ey = x. Use this to simplify dy

dx
. You

should get that when y = ln(x) we have that dy

dx
=

1

x
... as expected!



Differentiating Inverse Functions (DF8)

Activity 2.8.3 In this activity we will try to find a general formula for the derivative of
the inverse function. Let g be the inverse function of f . We have also used the notation f−1

before, but for the purpose of this problem, let us use g to avoid too many exponents. We
can express the relationship “g is the inverse of f” with the equation from Remark 2.8.1

f(g(x)) = x.

(a) Looking at the equation f(g(x)) = x, what is the derivative with respect to x of the
right hand side of the equation?

A. x

B. 1

C. 0

D. x2

(b) Looking at the equation f(g(x)) = x, what is the derivative with respect to x of the
left hand side of the equation?

A. f ′(g(x))

B. f ′(g′(x))

C. f(g(x)) g′(x)

D. f ′(g(x)) g′(x)

(c) Setting the two sides of the equation equal after differentiating, we can solve for g′(x).
What do you get?

A. g′(x) =
x

f(g(x))

B. g′(x) =
x

f ′(g(x))

C. g′(x) =
1

f(g(x))

D. g′(x) =
1

f ′(g(x))



Differentiating Inverse Functions (DF8)

Remark 2.8.4 In the above activity you should have found that the derivative of g = f−1,
the inverse function of f , is given by

(f−1)′(x) =
1

f ′(f−1(x))
.

Notice that because of the chain rule, the derivative of f has to be evaluated at f−1(x)



Differentiating Inverse Functions (DF8)

Activity 2.8.5 In this problem you will apply the general formula for the derivative of the
inverse function to find the values of some derivatives graphically.

10 20 30 40 50 60 70 80

4

8

12

16

20

24

f(x)

x

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

1

1.2

f ′(x)

x

Figure 41 The graphs of f(x) and f ′(x).

(a) The derivative of the inverse function at x = 12 given by (f−1)′(12) =
1

f ′(f−1(12))
.

Using the graphs, what is your best approximation for this quantity?

A. (f−1)′(12) ≈ 1

0.2
= 5

B. (f−1)′(12) ≈ 1

0.6
≈ 1.67

C. (f−1)′(12) ≈ 1

0.4
= 2.5

D. (f−1)′(12) ≈ 1

0.1
= 10

(b) What is your best estimate for (f−1)′(6) ?

A. (f−1)′(6) ≈ 1

0.2
= 5

B. (f−1)′(6) ≈ 1

0.6
≈ 1.67

C. (f−1)′(6) ≈ 1

0.4
= 2.5

D. (f−1)′(6) ≈ 1

0.1
= 10



Differentiating Inverse Functions (DF8)

Activity 2.8.6 Use the general formula for the derivative of the inverse function from
Remark 2.8.4 to find...

(a) The derivative of the inverse function of f(x) = ex... This should match the result of
Activity 2.8.2!

(b) The derivative of the inverse function of f(x) =
1

x
... This should match a derative

that you have seen before! See if you can explain why.



Differentiating Inverse Functions (DF8)

Definition 2.8.7 We can only invert the function y = sin(x) on the restricted domain
[−π/2, π/2] (Why?). On this domain we define arcsine by the condition

x = sin−1(y) when y = sin(x).

♢



Differentiating Inverse Functions (DF8)

Activity 2.8.8 In this activity you will study the arcsine function.

(a) Consider the values of y = sin(x) given in the table below for an angle x between −π/2
and π/2. Fill in the corresponding values for the inverse function arcsine x = sin−1(y).
In other words, you need to provide the angle in [−π/2, π/2] whose sine value is given.
You can use the unit circle to help you remember which angles yield the given values
of sine. The first entry is provided: a sine value of −1 corresponds to the angle −π/2.

Table 42
y = sin(x) −1 −

√
3/2 −1/2 0 1/2

√
3/2 1

x = sin−1(y) −π/2

(b) From the graph of y = sin(x) and your table above, graph the arcsine function y =
sin−1(x)

−π/2−π/3−π/6 0 π/6 π/3 π/2

−1

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

f(x) = sin(x)
x

y

−1−0.75−0.5−0.25 0.25 0.5 0.75 1

−π/2

−π/3

−π/6

0

π/6

π/3

π/2

x

y

Figure 43 The graphs of sin(x) and one point on sin−1(x).

(c) Let’s now work with the function arccosine. Again, we need to restrict the domain of
cosine to be able to invert the function (Why?). The convention is to restrict cosine
to the domain [0, π] in order to define arccosine. Given this restriction, what are
the domain and range of arccosine? Create a table of values and graph the function
arccosine.

(d) Let’s now work with the function arctangent. Again, we need to restrict the domain of
tangent to be able to invert the function (Why?). The convention is to restrict tangent
to the domain (−π/2, π/2) in order to define arctangent. Given this restriction, what
are the domain and range of arctangent? Create a table of values and graph the
function arctangent.



Differentiating Inverse Functions (DF8)

Activity 2.8.9 In this activity you will find a formula for the derivative of arctangent.

(a) Differentiate the implicit equation tan(y) = x, what do you get for dy

dx
?

A. dy

dx
=

x

tan(y)

B. dy

dx
=

1

tan(y)

C. dy

dx
=

x

sec2(y)

D. dy

dx
=

1

sec2(y)

(b) For what function y = g(x) have you found the derivative dy

dx
?

(c) We want to rewrite dy

dx
only in terms of x. Notice that

tan2(y) =
sin2(y)

cos2(y) =
1− cos2(y)

cos2(y) .

Multiplying out by the denominator, isolating, and solving for cos2(y), we get that

A. cos2(y) = tan2(y)

cos2(y)

B. cos2(y) = 1

tan2(y) + 1

C. cos2(y) = 1− cos2(y)
tan2(y)

D. cos2(y) = 1

tan2(y)− 1

(d) Finally, rewrite dy

dx
as dy

dx
= cos2(y) and use the fact that tan(y) = x to get a nice

formula for the derivative of the arctangent function of x.



Differentiating Inverse Functions (DF8)

Remark 2.8.10 Consider the functions y = tan−1(x). Using your algebra above, you should
have found that

d

dx

(
tan−1(x)

)
=

1

1 + x2
.

In a similar fashion, one can find that

d

dx

(
sin−1(x)

)
=

1√
1− x2

,
d

dx

(
cos−1(x)

)
= − 1√

1− x2
.



Differentiating Inverse Functions (DF8)

Activity 2.8.11 Demonstrate and explain how to find the derivative of the following func-
tions. Be sure to explicitly denote which derivative rules (product, quotient, sum and differ-
ence, etc.) you are using in your work.

(a)

k(t) =
arctan (−4 t)

ln (−4 t)

(b)
j(u) = −5 arcsin (u) log

(
u6 + 2

)
(c)

n(x) = ln (− arcsin (x) + 4 arctan (x))



Differentiating Inverse Functions (DF8)

Activity 2.8.12

(a) Find the equation of the tangent line to y = tan−1(x) at x = 0. Draw the function
and the tangent on a graphing calculator to check your work!

(b) Find the equation of the tangent line to y = sin−1(x) at x = 0.5. Draw the function
and the tangent on a graphing calculator to check your work!

(c) Find the equation of the tangent line to y = cos−1(x) at x = −0.5. Draw the function
and the tangent on a graphing calculator to check your work!



Differentiating Inverse Functions (DF8)

Activity 2.8.13 Let y = f(v) be the gas consumption (in ml/km) of a car at velocity v (in
km/hr). We use the notation: ml for milliliters, km for kilometers, and hr for hours. Also
consider the function g(y), where v = g(y) is the function that gives the velocity v (in km/hr)
when the gas consumption is y (in ml/km). You are given the graphs of f(v), f ′(v) below.
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1.2

f ′(v)

v

Figure 44 The graphs of f(v), f ′(v).

(a) Estimate f−1(6). What does this value mean in the context of the problem?

(b) Using your answer from part (a), estimate the derivative of the inverse function of f(x)
at x = 6 i.e., compute (f−1)′(6).

(c) What is the relationship between the functions f and g?

(d) Use the relationship between the functions f and g to estimate g(12) and g′(12). What
do these values mean in the context of the problem?



Chapter 3

Applications of Derivatives (AD)

Learning Outcomes
How can we use derivatives to solve application questions?
By the end of this chapter, you should be able to...

1. Use derivatives to answer questions about rates of change and equations of tangents.

2. Use tangent lines to approximate functions.

3. Model and analyze scenarios using related rates.

4. Use the Extreme Value Theorem to find the global maximum and minimum values of
a continuous function on a closed interval.

5. Determine where a differentiable function is increasing and decreasing and classify the
critical points as local extrema.

6. Determine the intervals of concavity of a twice differentiable function and find all of
its points of inflection.

7. Sketch the graph of a differentiable function whose derivatives satisfy given criteria.

8. Apply optimization techniques to solve various problems.

9. Compute the values of indeterminate limits using L’Hôpital’s Rule.

210



Tangents, Motion, and Marginals (AD1)

3.1 Tangents, Motion, and Marginals (AD1)

Learning Outcomes
• Use derivatives to answer questions about rates of change and equations of tangents.



Tangents, Motion, and Marginals (AD1)

Definition 3.1.1 The tangent line of a function f(x) at x = a is the linear function L(x)

L(x) = f ′(a)(x− a) + f(a).

Notice that this is the linear function with slope f ′(a) and passing through (a, f(a)) in
point-slope form. ♢



Tangents, Motion, and Marginals (AD1)

Activity 3.1.2 For the following functions, find the required tangent line.

(a) Find the tangent line to f(x) = ln(x) at x = 1

A. L(x) = x

B. L(x) = x+ 1

C. L(x) = x− 1

D. L(x) = −x+ 1

(b) Find the tangent line to f(x) = ex at x = 0

A. L(x) = x

B. L(x) = x+ 1

C. L(x) = x− 1

D. L(x) = −x+ 1



Tangents, Motion, and Marginals (AD1)

Activity 3.1.3 Let f(x) = −2x4+4 x2−x+5. Find an equation of the line tangent to the
graph at the point (−2,−9).



Tangents, Motion, and Marginals (AD1)

Definition 3.1.4 If a particle has position function s = f(t), where t is measured in seconds
and s is measured in meters, then the derivative of the position function tells us how the
position is changing over time, so f ′(t) gives us the (instantenous) velocity in meters per
second. Also, the derivative of the velocity gives us the change in velocity over time, so so
f ′′(t) gives us the (instantenous) acceleration in meters per second squared. Summarizing,

• v(t) = f ′(t) is the velocity of the particle in m/s.

• a(t) = f ′′(t) is the acceleration of the particle in m/s2.

♢



Tangents, Motion, and Marginals (AD1)

Activity 3.1.5 A particle moves on a vertical line so that its y coordinate at time t is

y = t3 − 9t2 + 24t+ 3

for t ≥ 0. Here t is measured in seconds and y is measured in feet.

(a) Find the velocity and acceleration functions.

(b) Sketch graphs of the position, velocity and acceleration functions for 0 ≤ t ≤ 5.

(c) When is the particle moving upward and when is it moving downward?

(d) When is the particle’s velocity increasing?

(e) Find the total distance that the particle travels in the time interval 0 ≤ t ≤ 5. Care-
ful: the total distance is not the same as the displacement (the change in position)!
Compute how much the particle moves up and add it to how much the particle moves
down.



Tangents, Motion, and Marginals (AD1)

Activity 3.1.6 Suppose the position of an object in miles is modeled by the following
function:

s(t) = −t3 − 3 t2 − 5 t+ 8.

Explain and demonstrate how to find the object’s position, velocity, and acceleration at
2 seconds. Use appropriate units for each.



Tangents, Motion, and Marginals (AD1)

Observation 3.1.7 In some cases, we want to also consider the speed of a particle, which
is the absolute value of the velocity. In symbols |v(t)| = |f ′(t)| is the speed of the particle.
A particle is speeding up when the speed is increasing.



Tangents, Motion, and Marginals (AD1)

Activity 3.1.8 Consider the speed of a particle. What is the behavior of the speed in
relation to velocity and acceleration?

A. The speed is always positive and it is
increasing when the velocity and the ac-
celeration have the same sign.

B. The speed is positive when the velocity
is positive and negative when the veloc-
ity is negative.

C. The speed is positive when the acceler-
ation is positive and negative when the
acceleration is negative.

D. The speed is always positive and it is
increasing when the velocity and the ac-
celeration have opposite signs.



Tangents, Motion, and Marginals (AD1)

Definition 3.1.9 In a parametric motion on a curve C given by x = f(t) and y = g(t) we
have that

• dx
dt

= f ′(t) is the rate of change of f(t), one component of the slope (or velocity)

• dy
dt

= g′(t) is the rate of change of g(t), one component of the slope (or velocity)

• dy
dx

is the actual slope (or velocity) of the object and by the chain rule dy
dx

= g′(t)
f ′(t)

♢



Tangents, Motion, and Marginals (AD1)

Activity 3.1.10 An airplane is cruising at a fixed height and traveling in a pattern described
by the parametric equations

x = 4t, y = −t4 + 4t− 1,

where x, y have units of miles, and t is in hours.

(a) Find the slope of the curve.

(b) What is the slope of the curve at (0,−1).

(c) Write the equation of the tangent line to the curve at (0,−1).



Tangents, Motion, and Marginals (AD1)

Definition 3.1.11 If C(x) is the cost of producing x items and R(x) is the revenue from
selling x items, then P (x) = R(x) − C(x) is the profit. We can study their derivatives, the
marginals

• C ′(x) is the marginal cost, the rate of change of the cost per unit change in production;

• R′(x) is the marginal revenue, the rate of change of the revenue per unit change in
sales;

• P ′(x) = R′(x)− C ′(x) is the marginal profit, the rate of change of the profit per unit
change in sales (assuming we are selling all the items produced).

♢



Tangents, Motion, and Marginals (AD1)

Activity 3.1.12 The manager of a computer shop has to decide how many computers to
store in the back of the shop. If she stores a large number, she has to pay extra in storage
costs. If she stores only a small number, she will have to reorder more often, which will
involve additional handling costs. She has found that if she stores x computers, the storage
and handling costs will be C dollars, where

C(x) = 10x3 − 900x2 + 16000x+ 210000

(a) What is the fixed cost of the computer shop, the cost when no computers are in storage?
In practical terms this may account for rent and utilities expenses.

(b) Find the marginal cost

(c) Now suppose that x computers give revenue R(x) = 1000x. What is the marginal
revenue? What is the real world interpretation of your finding?

(d) Find a formula for the profit function P (x) and find the marginal profit using the
marginal revenue and the marginal cost (assuming the number of items produced and
sold is equal and given by x).



Tangents, Motion, and Marginals (AD1)

Activity 3.1.13 A gizmo is sold for $63 per item. Suppose that the number of items
produced is equal to the number of items sold and that the cost (in dollars) of producing x
gizmos is given by the following function:

C(x) = 4 x3 + 10x2 + 7x+ 4.

Explain and demonstrate how to find the marginal revenue, the marginal cost, and the
marginal profit in this situation.



Tangents, Motion, and Marginals (AD1)

Definition 3.1.14 A cooling object has temperature modelled by

y = ae−kt + c,

where a, c, k are positive constants determined by the local conditions. ♢



Tangents, Motion, and Marginals (AD1)

Activity 3.1.15 Consider a cup of coffee initially at 100◦F. The said cup of coffee was
forgotten this morning in my living room where the thermostat is set at 72◦F. I also observed
that when I initially prepared the coffee, the temperature was decreasing at a rate of 3.8
degrees per minute.

(a) In the long run, what temperature do you expect the coffee to tend to? Use this
information in the model y = ae−kt + c to determine the value of c.

(b) Using the initial temperature of the coffee and your value of c, find the value of a in
the model y = ae−ktt+ c.

(c) The scenario also gives you information about the value of the rate of change at t = 0.
Use this additional information to determine the model y = ae−ktt+ c completely.

(d) You should find that the temperature model for this coffee cup is y = 72 + 38e−0.1t.
Explain how the values of each parameter connects to the information given.



Linear Approximation (AD2)

3.2 Linear Approximation (AD2)

Learning Outcomes
• Use tangent lines to approximate functions.



Linear Approximation (AD2)

Definition 3.2.1 The linear approximation (or tangent line approximation or linearization)
of a function f(x) at x = a is the tangent line L(x) at x = a. In formulas, L(x) is the linear
function

L(x) = f ′(a)(x− a) + f(a).

Notice that this is obtained by writing the tangent line to f(x) at (a, f(a)) in point-slope
form and calling the resulting linear function L(x). The linear approximation L(x) is a linear
function that looks like f(x) when we zoom in near x = a. ♢



Linear Approximation (AD2)

Activity 3.2.2 Without using a calculator, we will use calculus to approximate ln(1.1).

(a) Find the equation of the tangent line to ln(x) at x = 1. This will be your linear
approximation L(x). What do you get for L(x)?

A. L(x) = x

B. L(x) = x+ 1

C. L(x) = x− 1

D. L(x) = −x+ 1

(b) As 1.1 is close to 1, we can use L(1.1) to approximate ln(1.1). What approximation
do you get?

A. ln(1.1) ≈ 1.1

B. ln(1.1) ≈ 2.1

C. ln(1.1) ≈ 0.1

D. ln(1.1) ≈ −0.1

(c) Sketch the tangent line L(x) on the same plane as the graph of ln(x). What do you
notice?
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Figure 45 The graph of ln(x)



Linear Approximation (AD2)

Activity 3.2.3 Using the equation of the tangent line to the graph of ln(x) at x = 1 and
the shape of this graph, you can show that for all values of x, we have that ln(x) ≤ x− 1.

(a) Compute the second derivative of ln(x). What do you notice about the sign of the
second derivative of ln(x)? What does this tell you about the shape of the graph?

(b) Conclude that because the graph of ln(x) has a certain shape, the graph will bend
below the tangent line and so that ln(x) will always be smaller than the tangent line
approximation L(x) = x− 1.



Linear Approximation (AD2)

Activity 3.2.4 In this activity you will approximate power functions near x = 1.

(a) Find the tangent line approximation to x2 at x = 1.

A. L(x) = 2x

B. L(x) = 2x+ 1

C. L(x) = 2x− 1

D. L(x) = −2x+ 1

(b) Show that for any constant k, the tangent line approximation to xk at x = 1 is
L(x) = k(x− 1) + 1.

(c) Someone claims that the square root of 1.1 is about 1.05. Use the linear approximation
to check this estimate. Do you think this estimate is about right? Why or why not?

(d) Is the actual value
√
1.1 above or below 1.05? What feature of the graph of

√
x makes

this an over or under estimate?



Linear Approximation (AD2)

Remark 3.2.5 If a function f(x) is concave up around x = a, then the function is turning
upwards from its tangent line. So when we use a linear approximation, the value of the
approximation will be below the actual value of the function and the approximation is an
underestimate. If a function f(x) is concave down around x = a, then the function is turning
downwards from its tangent line. So when we use a linear approximation, the value of the
approximation will be above the actual value of the function and the approximation is an
overestimate.



Linear Approximation (AD2)

Activity 3.2.6 Suppose f has a continuous positive second derivative and ∆x is a small
increment in x (like h in the limit definition of the derivative). Which one is larger...

f(1 + ∆x) or f ′(1)∆x+ f(1) ?



Linear Approximation (AD2)

Activity 3.2.7 A certain function p(x) satisfies p(7) = 49 and p′(7) = 8.

1. Explain how to find the local linearization L(x) of p(x) at 7.

2. Explain how to estimate the value of p(6.951).

3. Suppose that p′(7) = 0 and you know that p′′(x) < 0 for x < 7. Explain how to
determine if your estimate of p(6.951) is too large or too small.

4. Suppose that p′′(x) > 0 for x > 7. Use this fact and the additional information above
to sketch an accurate graph of y = p(x) near x = 7.



Linear Approximation (AD2)

Activity 3.2.8 Let’s find the quadratic polynomial

q(x) = ax2 + bx+ c

where a, b, c are parameters to be determined so that q(x) best approximates the graph of
f(x) = ln(x) at x = 1.

(a) We want to choose a, b, c such that our quadratic polynomial resembles f(x) at x = 1.
First thing, we want f(1) = q(1). What equation in a, b, c does this condition give
you?

A. a+ b+ c = 1

B. a+ b+ c = 0

C. c = 0

D. c = 1

(b) We also want f ′(1) = q′(1). What equation in a, b, c does this condition give you?

(c) Finally, we want f ′′(1) = q′′(1). What equation in a, b, c does this condition give you?

(d) Find a solution to this system of linear equations! Your answer will give you values of
a, b, c that can be used to draw a quadratic approximating the natural logarithm. You
can check your answer on Desmos https://www.desmos.com/calculator/bad2xrwmvl

https://www.desmos.com/calculator/bad2xrwmvl


Linear Approximation (AD2)

Observation 3.2.9 A linear approximation L(x) to f(x) at x = a is a linear function with

L(a) = f(a), L′(a) = f ′(a).

A quadratic approximation Q(x) to f(x) at x = a is a quadratic function with

Q(a) = f(a), Q′(a) = f ′(a), Q′′(a) = f ′′(a).



Linear Approximation (AD2)

Activity 3.2.10 Find the linear approximation L(x) of cos(x) at x = 0. Then find the
quadratic approximation Q(x) of cos(x) at x = 0. Graph both and compare the two approx-
imations!



Linear Approximation (AD2)

Activity 3.2.11 Suppose the function p(x) satisfies p(−2) = 5, p′(−2) = 1, and p′′(x) < 0
for x values nearby −2.

(a) Explain and demonstrate how to find the linearization L(x) of p(x) at x = −2.

(b) Explain and demonstrate how to estimate the value of p(−2.03) using this linearization.

(c) Explain why your estimate of p(−2.03) is greater than or less than the actual value.

(d) Sketch a possible graph of p(x) and its linearization L(x) nearby x = −2 to illustrate
your findings.



Related Rates (AD3)

3.3 Related Rates (AD3)

Learning Outcomes
• Model and analyze scenarios using related rates.



Related Rates (AD3)

Remark 3.3.1 So far we have been interested in the instantaneous rate at which one variable,
say y, changes with respect to another, say x, leading us to compute and interpret dy

dx
. We

also have situations where several variables change together and often each quantity is a
function of time, represented by the variable t. Knowing how the quantities are related, we
will determine how their rates of change with respect to time are related.



Related Rates (AD3)

In a sense, the chain rule is our first example of related rates: recall that when y is a
function of x, which in turn is a function of t, we are considering the composite function
y(x(t)), and we learned that by the chain rule

dy

dt
=

dy

dx
· dx
dt

Notice that the chain rule gives a relationship between three rates: dy
dt
, dy
dx
, dx
dt

. □



Related Rates (AD3)

Activity 3.3.3 Remember the squirrels taking over my neighborhood? The population s
grows based on acorn availability a, at a rate of 2 squirrels per bushel. The acorn availability
a is currently growing at a rate of 100 bushels per week. What is ds

dt
in this situation?

A. 2

B. 100

C. 200

D. Not enough information



Related Rates (AD3)

In a more serious example, suppose that air is being pumped into a spherical balloon so
that its volume increases at a constant rate of 20 cubic inches per second. Since the balloon’s
volume and radius are related, by knowing how fast the volume is changing, we ought to be
able to discover how fast the radius is changing. Can we determine how fast is the radius of
the balloon increasing when the balloon’s diameter is 12 inches? □



Related Rates (AD3)

Activity 3.3.5 A spherical balloon is being inflated at a constant rate of 20 cubic inches per
second. How fast is the radius of the balloon changing at the instant the balloon’s diameter
is 12 inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why? Draw
several spheres with different radii, and observe that as volume changes, the radius, diameter,
and surface area of the balloon also change.Recall that the volume of a sphere of radius r
is V = 4

3
πr3. Note as well that in the setting of this problem, both V and r are changing

with time t. Hence both V and r may be viewed as implicit functions of t, with respective
derivatives dV

dt
and dr

dt
. Differentiate both sides of the equation V = 4

3
πr3 with respect to t

(using the chain rule on the right) to find a formula for dV
dt

that depends on both r and dr
dt

.At
this point in the problem, by differentiating we have “related the rates” of change of V and
r. Recall that we are given in the problem that the balloon is being inflated at a constant
rate of 20 cubic inches per second. Is this rate the value of dr

dt
or dV

dt
? Why?From part (c),

we know the value of dV
dt

at every value of t. Next, observe that when the diameter of the
balloon is 12, we know the value of the radius. In the equation dV

dt
= 4πr2 dr

dt
, substitute these

values for the relevant quantities and solve for the remaining unknown quantity, which is dr
dt

.
How fast is the radius changing at the instant d = 12?How is the situation different when
d = 16? When is the radius changing more rapidly, when d = 12 or when d = 16?



Related Rates (AD3)

Remark 3.3.6 In problems where two or more quantities are related to one another, like in
the case that all of the variables involved are functions of time t, we are interested in finding
out how their rates of change are related; we call these related rates problems. Once we have
an equation establishing the relationship among the variables, we differentiate the equation,
usually implicitly with respect to time, to find connections among the rates of change.



Related Rates (AD3)

Remark 3.3.7 A guide to solving related rated problems.

1. Picture it! Draw a diagram to represent the situation.

2. What do we know? Make a list of all quantities you are given in the problem, choosing
clearly defined variable names for them. If a quantity is changing (a rate), then it
should be labeled as a derivative.

3. What do we want to know? Make a list of all quantities to be determined. Again,
choose clearly defined variable names.

4. How are the variables related to each other? Find an equation that relates the variables
whose rates of change are known to those variables whose rates of change are to be
found.

5. How are the rates related? Differentiate implicitly with respect to time. This will give
an equation that relates the rates together.

6. Time to evaluate! Evaluate the derivatives and variables at the information relevant
to the instant at which a certain rate of change is sought.



Related Rates (AD3)

Remark 3.3.8 Volume formulas.

• A sphere of radius r has volume V = 4
3
πr3

• A vertical cylinder of radius r and height h has volume V = πr2h

• A cone of radius r and height h has volume V = π
3
r2h



Related Rates (AD3)

Activity 3.3.9 A vertical cylindrical water tank has a radius of 1 meter. If water is pumped
out at a rate of 3 cubic meters per minute, at what rate will the water level drop?

(a) Draw a figure to represent the situation. Introduce variables that measure the radius
of the water’s surface, the water’s depth in the tank, and the volume of the water.
Label your diagram.

(b) What information about rates of changes does the problem give you?

(c) Recall that the volume of a cylinder of radius r and height h is V = πr2h. What is the
related rates equation in the context of the vertical cylindrical tank? What derivative
rules did you use to find this equation?

A. dV

dt
= π2r

dh

dt

B. dV

dt
= πr2

dh

dt

C. dV

dt
= π

dr

dt
h

D. dV

dt
= π2r

dr

dt
h+ πr2

dh

dt

E. dV

dt
= π2rh+ πr2

(d) Which variable(s) have a constant value in this situation? Why?

A. The variable measuring the radius of
the water’s surface

B. The variable measuring the depth of

the water
C. The variable measuring the volume of

the water

(e) Which variable(s) have a constant rate of change in this situation? Why?

A. The variable measuring the radius of
the water’s surface

B. The variable measuring the depth of

the water
C. The variable measuring the volume of

the water

(f) Using your finding above, find at what rate the water level is dropping.

(g) If the full tank contains 12 cubic meters of water, how long does it take to empty the
tank?

(h) Confirm your finding in the previous part by finding the initial water level for 12 cubic
centimeters of water and determine how long it takes for the water level to reach 0.



Related Rates (AD3)

Activity 3.3.10 A water tank has the shape of an inverted circular cone (the cone points
downwards) with a base of radius 6 feet and a depth of 8 feet. Suppose that water is being
pumped into the tank at a constant instantaneous rate of 4 cubic feet per minute.

(a) Draw a picture of the conical tank, including a sketch of the water level at a point in
time when the tank is not yet full. Introduce variables that measure the radius of the
water’s surface and the water’s depth in the tank, and label them on your figure.

(b) Say that r is the radius and h the depth of the water at a given time, t. Notice that at
any point of time there is a fixed proportion between the depth and the radius of the
volume of water, forced by the shape of the tank. What proportional equation relates
the radius and height of the water, and why?

(c) Determine an equation that gives the volume of water in the tank as a function of only
the depth h of the water (so eliminate the radius from the volume equation using the
previous part).

(d) Through differentiation, find an equation that relates the instantaneous rate of change
of water volume with respect to time to the instantaneous rate of change of water
depth at time t.

(e) Find the instantaneous rate at which the water level is rising when the water in the
tank is 3 feet deep.

(f) When is the water rising most rapidly?

A. h = 3

B. h = 4

C. h = 5

D. The water level rises at a constant
rate



Related Rates (AD3)

Activity 3.3.11 Recall that in a right triangle with sides a, b and hypotenuse c we have the
relationship

a2 + b2 = c2,

also known in the western world as the Pythagorean theorem (even though this result was
well know well before his time by other civilizations).

(a) Notice that by differentiating the equation above with respect to t we get a relationship
between a, b, c, da

dt
, db
dt
, dc
dt

. Find this related rates equation.

(b) A rectangle has one side of 8 cm. How fast is the diagonal of the rectangle changing at
the instant when the other side is 6 cm and increasing at a rate of 3 cm per minute?

(c) A 10 m ladder leans against a vertical wall and the bottom of the ladder slides away
at a rate of 0.5 m/sec. When is the top of the ladder sliding the fastest down the wall?

A. When the bottom of the ladder is 4
meters from the wall.

B. When the bottom of the ladder is 8

meters from the wall.
C. The top of the ladder is sliding down

at a constant rate.



Related Rates (AD3)

Activity 3.3.12 Suppose a car was 75 miles east of a town, traveling west at 75 mph. A
second car was 120 miles north of the same town, traveling south at 70 mph. At this exact
moment, how fast is the distance between the cars changing?



Extreme Values (AD4)

3.4 Extreme Values (AD4)

Learning Outcomes
• Use the Extreme Value Theorem to find the global maximum and minimum values of

a continuous function on a closed interval.



Extreme Values (AD4)

Remark 3.4.1 In many different settings, we are interested in knowing where a function
achieves its least and greatest values. These can be important in applications—say to identify
a point at which maximum profit or minimum cost occurs—or in theory to characterize the
behavior of a function or a family of related functions.



Extreme Values (AD4)

Consider the familiar example of a parabolic function such as s(t) = −16t2 + 32t + 48.
This function represents the height of an object tossed vertically straight up: its maximum
value occurs at the vertex of the parabola and represents the greatest height the object
reaches. This maximum value is an especially important point on the graph and we can
notice that the function changes from increasing to decreasing at this point.
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Figure 46 The graph of s(t) = −16t2 + 32t+ 48

□



Extreme Values (AD4)

Definition 3.4.3 We say that f(x) has a global maximum at x = c provided that f(c) ≥
f(x) for all x in the domain of the function. We also say that f(c) is a global maximum
value for the function. On the other hand, we say that f(x) has a global minimum at
x = c provided that f(c) ≤ f(x) for all x in the domain of the function. We also say that
f(c) is a global minimum value for the function. The global maxima and minima are also
known as the global extrema (or extreme values or absolute extrema) of the function. ♢



Extreme Values (AD4)

Activity 3.4.4 According to Definition 3.4.3, which of the following statements best de-
scribes the global extrema of the function in Figure 64?

A. The global maximum is t = 1, because
this is where the function goes from in-
creasing to decreasing.

B. The global maximum is s(1) = 64, be-
cause s(t) ≤ 64 for every other input

t.

C. The graph has two global minima at the
endpoints because the endpoints must
be global extrema.

D. The graph has no global minimum.



Extreme Values (AD4)

Observation 3.4.5 There can be some issues when trying to determine the global mimimum
and maximum values of a function only using its graph. The Extreme Value Theorem will
guarantee the existence of global extrema on a closed interval. Then we will see how to use
derivatives to find algebraically the extrema of a function.



Extreme Values (AD4)

Activity 3.4.6 For each of the following figures, decide where the global extrema are located.

(a) Figure 47

(b) Figure 48

(c) Figure 49

(d) Figure 50



Extreme Values (AD4)

Activity 3.4.7 The Extreme Value Theorem (EVT) guarantees a global maximum and a
global minumum for which of the following?

A. f(x) =
x2

x2 − 4x− 5
on [−5, 0].

B. f(x) =
x2

x2 − 4x− 5
on [0, 4].

C. f(x) =
x2

x2 − 4x− 5
on [4, 6].

D. f(x) =
x2

x2 − 4x− 5
on [6, 10].



Extreme Values (AD4)

Activity 3.4.8 For the following activity, draw a sketch of a function that has the following
properties.

(a) The function is continuous and has an global minimum but no global maximum.

(b) The function is continuous and has an global maximum but no global minimum.



Extreme Values (AD4)

Definition 3.4.9 We say that x = c is a critical point (or critical number) of f(x) if x = c
is in the domain of f(x) and either f ′(c) = 0 or f ′(c) does not exist. ♢



Extreme Values (AD4)

Activity 3.4.10 Which of the following are critical numbers for f(x) = 1
3
x3 − 2x+ 2?

A. x =
√
2 and x = −

√
2.

B. x =
√
2.

C. x = 2 and x = 0.

D. x = 2.



Extreme Values (AD4)

Remark 3.4.11 The Closed Interval Method. The following is a way of finding the
global extrema of a continuous function f on a closed interval [a, b].

1 Make a list of all critical points of f in (a, b). (Do not include any critical points outside
of the interval).

2 Add the endpoints a and b to the list.

3 Evaluate f at all points on your list.

4 The smallest output occurs at the global minimum. The largest output occurs at the
global maximum.



Extreme Values (AD4)

Activity 3.4.12 What are the global extrema for f(x) = 3x4 − 4x3 on [−1, 2].

A. Global maximum is when x = 0 and
global minimum when x = 1.

B. Global maximum is when x = 2 and
global minimum when x = −1.

C. Global maximum is when x = 2 and
global minimum when x = 1.

D. Global maximum is when x = 0 and
global minimum when x = −1.



Extreme Values (AD4)

Activity 3.4.13 What are the global extrema for f(x) = x
√
4− x on [−2, 4].

A. Global maximum is when x = −2 and
global minimum when x = 8

3
.

B. Global maximum is when x = 4 and
global minimum when x = 8

3
.

C. Global maximum is when x = 8
3

and
global minimum when x = −2.

D. Global maximum is when x = 4 and
global minimum when x = −2.



Extreme Values (AD4)

Activity 3.4.14 Explain how to find the global minimum and global maximum values of
the function f(x) = −2x3 + 18x2 + 42x+ 33 on the interval [−2, 2].



Extreme Values (AD4)

Activity 3.4.15 In this problem you will consider the function g(x).

g(x) =

{
x3 − 3x x < 0

x2 − 4x+ 2 x ≥ 0

(a) What can you say about the point x = 0?

(b) In addition to x = 0, find the other two critical points. What are the critical points of
g(x)?

A. x = 0, x = 1, x = 2

B. x = 0, x = −1, x = 2

C. x = 0, x = −1, x = −2

D. x = 0, x = 1, x = −2

(c) Can you use the Closed Interval Method on [−4,−1]? If you can, find the global max
and min. If you can’t, explain why.

(d) Can you use the Closed Interval Method on [1, 4]? If you can, find the global max and
min. If you can’t, explain why.

(e) Can you use the Closed Interval Method on [−1, 1]? If you can, find the global max
and min. If you can’t, explain why.
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3.5 Derivative Tests (AD5)

Learning Outcomes
• Determine where a differentiable function is increasing and decreasing and classify the

critical points as local extrema.



Derivative Tests (AD5)

Definition 3.5.1 We say that f(x) has a local maximum at x = c provided that f(c) ≥
f(x) for all x near c. We also say that f(c) is a local maximum value for the function. On
the other hand, we say that f(x) has a local minimum at x = c provided that f(c) ≤ f(x)
for all x near c. We also say that f(c) is a local minimum value for the function. The local
maxima and minima are also known as the local extrema (or relative extrema) of the function.

♢



Derivative Tests (AD5)

Observation 3.5.2 To find the extreme values of a function we can consider all its local
extrema (local maxima and minima) and study them to find which one(s) give the largest and
smallest values on the function. But how do you find the local/relative extrema? We will see
that we can detect local extrema by computing the first derivative and finding the critical
points of the function. By finding the critical points, we will produce a list of candidates for
the extrema of the function.



Derivative Tests (AD5)

Activity 3.5.3 We have encountered several terms recently, so we should make sure that
we understand how they are related. Which of the following statements are true?

A. In a closed interval an endpoint is always a local extrema but it might or might not be
a global extrema.

B. In a closed interval an endpoint is always a global extrema.

C. A critical point is always a local extrema but it might or might not be a global extrema.

D. A local extrema only occurs where the first derivative is equal to zero.

E. A local extrema always occurs at a critical point.

F. A local extrema might occur at a critical point or at an endpoint of a closed interval.



Derivative Tests (AD5)

Activity 3.5.4

(a) Sketch the graph of a continuous function that is increasing on (−∞,−2), constant on
the interval (3, 5), and decreasing on the interval (−2, 3).

(b) How would you describe the derivative of the function on each interval?

A. For x < −2 we have f ′(x) < 0, then f ′(x) < 0 on the interval (−2, 3), and on the
interval (3, 5) we have f ′(x) > 0.

B. For x < −2 we have f ′(x) > 0, then f ′(x) < 0 on the interval (−2, 3), and on the
interval (3, 5) we have f ′(x) is undefined.

C. For x < −2 we have f ′(x) > 0, then f ′(x) < 0 on the interval (−2, 3), and on the
interval (3, 5) we have f ′(x) = 0.

D. For x < −2 we have f ′(x) < 0, then f ′(x) < 0 on the interval (−2, 3), and on the
interval (3, 5) we have f ′(x) is constant.



Derivative Tests (AD5)

Activity 3.5.5 Look back at the graph you made for Activity 3.5.4.
Which of the following best describes what is occurring when graph changes behavior?

A. There is a critical point.

B. There is a local maximum or minimum.

C. The derivative is undefined.

D. The derivative is equal to zero.



Derivative Tests (AD5)

Observation 3.5.6 Critical points detect changes in the behavior of a function. We will
use critical points as ”break points” in studying the behavior of a function. To understand
what happens at the critical points we use the Derivative Tests.



Derivative Tests (AD5)

Activity 3.5.7 Let f(x) = x4 − 4x3 + 4x2

(a) Find all critical points of f(x). Draw them on the same number line.

(b) What intervals have been created by subdividing the number line at the critical points?

(c) Pick an x-value that lies in each interval. Determine whether f ′(x) is positive or
negative at each point.

(d) On which intervals is f(x) increasing? On which intervals is f(x) decreasing?

(e) List all local extrema.



Derivative Tests (AD5)

Activity 3.5.8 Consider the function f(x) = −x3 + 3x+ 4.

(a) Find the open intervals where f(x) is increasing or decreasing.

(b) Find the local extrema of f(x).



Derivative Tests (AD5)

Remark 3.5.9 Dealing with discontinuities. Our previous activity dealt with a func-
tion that was continuous for all real numbers. Because of that, we could trust our chart
to point out local extrema. Let’s now consider what might happen if a function has any
discontinuities.



Derivative Tests (AD5)

Activity 3.5.10 Draw a function that is increasing on the left of x = 1, discontinuous at
x = 1, such that f(1) = lim

x→1+
f(x), and decreasing to the right of x = 1. Does the derivative

of f(x) exist at x = 1? Does your graph have a local maximum or minimum at x = 1?



Derivative Tests (AD5)

Activity 3.5.11 Let f(x) = x
(x−2)2

.

(a) Note that f(x) is not defined for x = 2. But the function may be increasing on one
side of x = 2 and decreasing on the other! So we include x = 2 on your number line.

(b) Find all critical points of f(x). Plot them and any discontinuities for f(x) on the same
number line.

(c) What intervals have been created by subdividing the number line at the critical points
and at the discontinuities?

(d) Pick an x-value that lies in each interval. Determine whether f ′(x) is positive or
negative each point.

(e) On which intervals is f(x) increasing? On which intervals is f(x) decreasing?

(f) List all local maxima and local minima.



Derivative Tests (AD5)

Activity 3.5.12 For each of the following functions, find the intervals on which f(x) is
increasing or decreasing. Then identify any local extrema using either the First or Second
Derivative Test.

(a) f(x) = x3 + 3x2 + 3x+ 1

(b) f(x) = 1
2
x+ cosx on (0, 2π)

(c) f(x) = (x2 − 9)2/3

(d) f(x) = ln(2x− 1). (Hint: think about the domain of this one before you get started!)

(e) f(x) = x2

x2−4
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Activity 3.5.13

(a) Suppose f is continuous and differentiable on [a, b] and also suppose that f(a) = f(b).
What is the average rate of change of f(x) on [a, b]? What does the MVT (Mean Value
Theorem) tell you?

(b) Use part (a) to show with the MVT that f(x) = (x − 1)2 + 3 has a critical point on
[0, 2] .



Concavity and Inflection (AD6)

3.6 Concavity and Inflection (AD6)

Learning Outcomes
• Determine the intervals of concavity of a twice differentiable function and find all of

its points of inflection.



Concavity and Inflection (AD6)

Observation 3.6.1 In addition to asking whether a function is increasing or decreasing, it
is also natural to inquire how a function is increasing or decreasing. Activity 3.6.2 describes
three basic behaviors that an increasing function can demonstrate on an interval, as pictured
in Figure 71



Concavity and Inflection (AD6)

Activity 3.6.2 Sketch a sequence of tangent lines at various points to each of the following
curves in Figure 71.

Figure 51 Three increasing functions

(a) Look at the curve pictured on the left of Figure 71. How would you describe the slopes
of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.

(b) Look at the curve pictured in the middle of Figure 71. How would you describe the
slopes of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.

(c) Look at the curve pictured on the right of Figure 71. How would you describe the
slopes of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.



Concavity and Inflection (AD6)

Remark 3.6.3 On the leftmost curve in Figure 71, as we move from left to right, the slopes
of the tangent lines will increase. Therefore, the rate of change of the pictured function is
increasing, and this explains why we say this function is increasing at an increasing rate.
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Observation 3.6.4 We must be extra careful with our language when dealing with negative
numbers. For example, it can be tempting to say that “−100 is bigger than −2.” But we
must remember that “greater than” describes how numbers lie on a number line: −100 is
less than −2 becomes it comes earlier on the number line. It might be helpful to say that
“−100 is ”more negative” than −2.”



Concavity and Inflection (AD6)

Activity 3.6.5 Sketch a sequence of tangent lines at various points to each of the following
curves in Figure 72.

Figure 52 From left to right, three functions that are all decreasing.

(a) Look at the curve pictured on the left in Figure 72. How would you describe the slopes
of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.

(b) Look at the curve pictured in the middle in Figure 72. How would you describe the
slopes of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.

(c) Look at the curve pictured on the right in Figure 72. How would you describe the
slopes of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines re-
main constant as you move from left

to right.

C. The slopes of the tangent lines in-
crease as you move from left to right.



Concavity and Inflection (AD6)

Remark 3.6.6 Recall the terminology of concavity: when a curve bends upward, we say its
shape is concave up. When a curve bends downwards, we say its shape is concave down.



Concavity and Inflection (AD6)

Activity 3.6.7 Look at in Figure 73. Which curve is concave up? Which one is concave
down? Why? Try to explain using the graph!

Figure 53 Two concavity, which is which?



Concavity and Inflection (AD6)

Definition 3.6.8 Let f be a differentiable function on some interval (a, b). Then f is
concave up on (a, b) if and only if f ′ is increasing on (a, b); f is concave down on (a, b) if
and only if f ′ is decreasing on (a, b). ♢



Concavity and Inflection (AD6)

Activity 3.6.9 Look at how the slopes of the tangent lines change from left to right for each
of the two graphs in Figure 73

(a) Look at the curve pictured on the left in Figure 73. How would you describe the slopes
of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines in-
crease as you move from left to right.

C. The slopes of the tangent lines go

from increasing to decreasing as you
move from right to left.

D. The slopes of the tangent lines go
from decreasing to increasing as you
move from right to left.

(b) Which of the following statements is true about the function on the left in Figure 73?

A. f ′(x) > 0 on the entire interval
shown.

B. f ′(x) < 0 on the entire interval
shown.

C. f ′′(x) > 0 on the entire interval
shown.

D. f ′′(x) < 0 on the entire interval
shown.

(c) Look at the curve pictured on the right in Figure 73. How would you describe the
slopes of the tangent lines as you move from left to right?

A. The slopes of the tangent lines de-
crease as you move from left to right.

B. The slopes of the tangent lines in-
crease as you move from left to right.

C. The slopes of the tangent lines go

from increasing to decreasing as you
move from right to left.

D. The slopes of the tangent lines go
from decreasing to increasing as you
move from right to left.

(d) Which of the following statements is true about the function on the right in Figure 73?

A. f ′(x) > 0 on the entire interval
shown.

B. f ′(x) < 0 on the entire interval
shown.

C. f ′′(x) > 0 on the entire interval
shown.

D. f ′′(x) < 0 on the entire interval
shown.



Concavity and Inflection (AD6)

Observation 3.6.10 In the previous section, we saw in Activity 3.5.8 how to use critical
points of the function and the sign of the first derivative to identify intervals of increase/
decrease of a function. The next activity Activity 3.6.12 uses the critical points of a first
derivative function and the sign of its second derivative (accordingly to Theorem 3.6.10) to
identify where the original function is concave up/down.



Concavity and Inflection (AD6)

Activity 3.6.11 Let f(x) = x4 − 54x2.

(a) Find all the zeros of f ′′(x).

(b) What intervals have been created by subdividing the number line at zeros of f ′′(x)?

(c) Pick an x-value that lies in each interval. Determine whether f ′′(x) is positive or
negative at each point.

(d) On which intervals is f ′(x) increasing? On which intervals is f ′(x) decreasing?

(e) List all the intervals where f(x) is concave up and all the intervals where f(x) is
concave down.



Concavity and Inflection (AD6)

Definition 3.6.12 If x = c is a point where f ′′(x) changes sign, then the concavity of graph
of f(x) changes at this point and we call x = c an inflection point of f(x). ♢



Concavity and Inflection (AD6)

Activity 3.6.13 Use the results from Activity 3.6.12 to identify all of the inflection points
of f(x) = x4 − 54x2.



Concavity and Inflection (AD6)

Activity 3.6.14 For each of the following functions, describe the open intervals where it is
concave up or concave down, and any inflection points.

(a) f(x) = −1
4
x5 − 5

2
x4 − 15

2
x3

(b) f(x) = 3
20
x5 + x4 − 5

2
x3

(c) g(x) = x− cos
(π
2
x
)
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Activity 3.6.15 Consider the following table. The values of the first and second derivatives
of f(x) are given on the domain [0, 7]. The function f(x) does not suddenly change behavior
between the points given, so the table gives you enough information to completely determine
where f(x) is increasing, decreasing, concave up, and concave down.

x 0 1 2 3 4 5 6 7

f ′(x) 2 0 −2 0 2 1 0 −1

f ′′(x) −2 −1 0 1 0 −1 0 3

(a) List all the critical points of f(x) that you can find using the table above.

(b) Use the First Derivative Test to classify the critical numbers (decide if they are a max
or min). Write full sentence stating the conclusion of the test for each critical number.

(c) On which interval(s) is f(x) increasing? On which interval(s) is f(x) decreasing? List
all the critical points of f(x) that you can find using the table above.

(d) There is one critical number for which the Second Derivative Test is inconclusive.
Which one? You can still determine if it is a max or min using the First Derivative
Test!

(e) List all the critical points of f ′(x) that you can find using the table above.

(f) On which intervals is f(x) concave up? On which intervals is f(x) concave down?

(g) List all the inflection points of f(x) that you can find using the table above.



Graphing with Derivatives (AD7)

3.7 Graphing with Derivatives (AD7)

Learning Outcomes
• Sketch the graph of a differentiable function whose derivatives satisfy given criteria.



Graphing with Derivatives (AD7)

Remark 3.7.1 In Section 3.5 and Section 3.6 we learned how the first and second derivatives
give us information about the graph of a function. Specifically, we can determine the intervals
where a function is increasing, decreasing, concave up, or concave down as well as any local
extrema or inflection points. Now we will put that information together to sketch the graph
of a function.



Graphing with Derivatives (AD7)

Activity 3.7.2 Which of the following features best describe the curve graphed below?

Figure 54

A. Increasing and concave up

B. Increasing and concave down

C. Decreasing and concave up

D. Decreasing and concave down



Graphing with Derivatives (AD7)

Activity 3.7.3

(a) Which of the following features best describe the curve graphed below?

Figure 55

A. f ′ > 0 and f ′′ > 0

B. f ′ > 0 and f ′′ < 0

C. f ′ < 0 and f ′′ > 0

D. f ′ < 0 and f ′′ < 0

(b) For each of the other three answer choices, sketch a curve that matches that description.



Graphing with Derivatives (AD7)

Activity 3.7.4 For each prompt that follows, sketch a possible graph of a function on the
interval −3 < x < 3 that satisfies the stated properties.

(a) A function f(x) that is increasing on −3 < x < 3, concave up on −3 < x < 0, and
concave down on 0 < x < 3.

(b) A function g(x) that is increasing on −3 < x < 3, concave down on −3 < x < 0, and
concave up on 0 < x < 3.

(c) A function h(x) thatis decreasing on −3 < x < 3, concave up on −3 < x < −1, neither
concave up nor concave down on −1 < x < 1, and concave down on 1 < x < 3.

(d) A function p(x) that is decreasing and concave down on −3 < x < 0 and is increasing
and concave down on 0 < x < 3.



Graphing with Derivatives (AD7)

Observation 3.7.5 To draw an accurate sketch, we must keep in mind additional charac-
teristics of a function, such as the domain and the horizontal and vertical asymptotes (when
they exist). The next problem Activity 3.7.6 includes those aspects in addition to increasing,
decreasing, and concavity features.



Graphing with Derivatives (AD7)

Activity 3.7.6 The following chart describes the values of f(x) and its first and second
derivatives at or between a few given values of x, where ∄ denotes that f(x) does not exist
at that value of x.

x −8 −6 −3 0 2 5 8 11 13

f(x) 3 5 ∄ −5 ∄ 4 ∄ −5 −3

f ′(x) + + − − − − + + + +

f ′′(x) + − − + − + + − − −

Assume that f(x) has vertical asymptotes at each x-value where f(x) does not exist, that
lim

x→−∞
f(x) = 1, and that lim

x→∞
f(x) = −1.

(a) List all the asymptotes of f(x) and mark them on the graph.

(b) Does f(x) have any local maxima or local minima? If so, at what point(s)?

(c) Does f(x) have any inflection points? If so, at what point(s)?

(d) Use the information provided to sketch a reasonable graph of f(x). Watch changes in
behavior due to changes in the sign of each derivative.



Graphing with Derivatives (AD7)

Remark 3.7.7 A guide to curve sketching.

1. Identify the domain of the function.

2. Identify any vertical or horizontal asymptotes, if they exist.

3. Find f ′(x). Then use it to determine the intervals where the function is increasing and
the intervals where the function is decreasing. State any local extrema.

4. Find f ′′(x). Then use it to determine the intervals where the function is concave up
and the intervals where the function is concave down. State any inflection points.

5. Put everything together and draw sketch.



Graphing with Derivatives (AD7)

Activity 3.7.8 Sketch the graph of each of the following functions using the guide to curve
sketching found in Remark 3.7.7

(a) f(x) = x4 − 4x3 + 10

(b) f(x) = x2−4
x2−9

(c) f(x) = x+ 2 cosx on the interval [0, 2π]

(d) f(x) = x2+x−2
x+3

(e) f(x) = x√
x2+2

(f) f(x) = x6 + 12
5
x5 − 12x4 + 10
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3.8 Applied Optimization (AD8)

Learning Outcomes
• Apply optimization techniques to solve various problems.



Applied Optimization (AD8)

Activity 3.8.1 The box. Help your company design an open box (that is, a box with no
lid) with maximum volume given the following constraints:

• The box must be made from a square piece of cardboard that is 8 inches on each side.

• To create the box, you are asked to cut out smaller squares from each corner of the 8
by 8 inches piece of cardboard and to fold up the flaps to form the sides.

(a) Which of the following diagrams best illustrates how the box is created?

A.

B.

C.

D.

(b) Which of the following gives the volume of the box as a function of the side length x
of the smaller squares?

A. V (x) = x3

B. V (x) = x2 · (8− x)

C. V (x) = x2 · (8− 2x)

D. V (x) = x(8− x)2

(c) For this problem, what is the best choice of domain for the function V (x)?



Applied Optimization (AD8)

A. 0 ≤ x ≤ 4

B. 0 ≤ x ≤ 8

C. 0 ≤ x < ∞
D. −∞ < x < ∞

(d) Which equations’s solution(s) will include the cut value x that yields the box of maxi-
mum volume?

A. x2(8− 2x) = 0

B. x(8− 2x)2 = 0

C. (8− 2x)2 − 2x = 0

D. (8− 2x)2 − 2x(8− 2x) = 0

(e) What is the cut value that yields the box of maximum volume?



Applied Optimization (AD8)

Remark 3.8.2 A guide for optimization problems.

1. Draw a diagram and introduce variables.

2. Determine a function of a single variable that models the quantity to be optimized.

3. Decide the domain on which to consider the function being optimized.

4. Use calculus to identify the global maximum and/or minimum of the quantity being
optimized.

5. Conclusion: what are the optimal points and what optimal values do we obtain at
these points?



Applied Optimization (AD8)

Activity 3.8.3 According to U.S. postal regulations, the girth plus the length of a parcel
sent by mail may not exceed 108 inches, where the “girth” is the perimeter of the smallest
end. What is the largest possible volume of a rectangular parcel with a square end that can
be sent by mail? What are the dimensions of the package of largest volume?

(a) Let x represent the length of one side of the square end and y the length of the longer
side. Label these quantities appropriately on the image shown in Figure 76.

Figure 56 A rectangular parcel with a square end.

(b) What is the quantity to be optimized in this problem?

A. maximize volume (call this V )
B. maximize the girth plus length (call this P )
C. minimize volume (call this V )
D. minimize the girth plus length (call this P )

(c) Which formula below represents the quantity you want to optimize in terms of x and
y?

A. V = x2y

B. V = xy2

C. P = 2x+ y

D. P = 4x+ y

(d) The problem statement tells us that the parcel’s girth plus length (P ) may not exceed
108 inches. In order to maximize volume, we assume that we will actually need the
girth plus length P to equal 108 inches. What equation does this constraint give us
involving x and y?

A. 108 = 4x+ y

B. 108 = 2x+ y

C. 108 = x2 + y

D. 108 = xy2



Applied Optimization (AD8)

(e) The equation above gives the relationship between x and y. For ease of notation, solve
this equation for y as a function on x and then find a formula for the volume of the
parcel as a function of the single variable x. What is the formula for V (x)?

A. V (x) = x2(108− 4x)

B. V (x) = x(108− 4x)2

C. V (x) = x2(108− 2x)

D. V (x) = x(108− 2x)2

(f) Over what domain should we consider this function? To answer this question, notice
that the problem gives us the constraint that P (girth plus length) is 108 inches. This
constraint produces intervals of possible values for x and y.

A. 0 ≤ x ≤ 108

B. 0 ≤ y ≤ 108

C. 0 ≤ x ≤ 27

D. 0 ≤ y ≤ 27

(g) Use calculus to find the global maximum of the volume of the parcel on the domain
you just determined. Justify that you have found the global maximum using either the
Closed Interval Method, the First Derivative Test, or the Second Derivative Test!



Applied Optimization (AD8)

Remark 3.8.4 Notice that a critical point might or might not be a global maximum or
minimum, so just finding the critical points is not enough to answer an optimization problem.
Moreover, some of the critical points might be outside of the domain imposed by the context
and thus they cannot be feasible optimal points.
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Activity 3.8.5 Revenue = Number of tickets × Price of ticket. Waterford movie
theater currently charges $8 for a ticket. At this price, the theater sells 200 tickets daily.
The general manager wonders if they can generate more revenue by increasing the price of
a tickets. A survey shows that they will lose 20 customers for every dollar increase in the
ticket price.

(a) If the price of a movie ticket is increased by d dollars, write a formula for the price P
in terms of d.

(b) If the price of a ticket is increased by one dollar, how many many customers will the
theater lose?

(c) Write a formula for the number of tickets sold T as a function of a price increase of d
dollars.

(d) Consider the new price of a ticket P (d) and the new number of tickets sold T (d). Write
a formula for the revenue earned by ticket sales R(d) as a function of a price increase
of d dollars.

(e) What is a realistic domain for the function R(d)?

(f) What increase in price d should the general manager choose to maximize the revenue?
What price would a movie ticket cost then and what would the revenue be at that
price?

(g) Suppose now that the cost of running the business when the price is increased by d
dollars is given by C(d) = 10d3−40d2 + 40d + 600. If the manager decides that they
will definitely increase the price, what price increase d maximizes the profit? (Recall
that Profit = Revenue - Cost).
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Activity 3.8.6 Modeling given a geometric shape. The city council is planning to
construct a new sports ground in the shape of a rectangle with semicircular ends. A running
track 400 meters long is to go around the perimeter.

(a) What choice of dimensions will make the rectangular area in the center as large as
possible?

(b) What should the dimensions so the total area enclosed by the running track is maxi-
mized?



Applied Optimization (AD8)

Activity 3.8.7 Modeling in algebraic situations.

(a) Find the coordinates of the point on the curve y =
√
x closest to the point (1, 0).

(b) The sum of two positive numbers is 48. What is the smallest possible value of the sum
of their squares?
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Activity 3.8.8 Suppose that if a widget is priced at $176, then you are able to sell 672
units each day. According to a survey of customers, increasing this price by $1 will result in
losing 4 daily sales; decreasing by $1 will gain 4 daily sales. Your manager asks you how to
adjust the price of a widget to maximize the revenue (widgets sold times price). Write an
explanation of what this change in price should be and why.
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3.9 Limits and Derivatives (AD9)

Learning Outcomes
• Compute the values of indeterminate limits using L’Hôpital’s Rule.



Limits and Derivatives (AD9)

Remark 3.9.1 When we compute a limit algebraically, we often encounter the indeterminate
form

0

0

but this means that limit can equal any number, infinity, or it might not exist. When we
encounter an indeterminate form, we just do not know (yet) what the value of the limit is.



Limits and Derivatives (AD9)

Activity 3.9.2 We can compute limits that give indeterminate forms via algebraic manipu-
lations. Consider

lim
x→1

4x− 4

x2 − 1
.

(a) Verify that this limit gives an indeterminate form of the type 0
0
.

(b) As you are computing a limit, you can cancel common factors. After you simplify the
fraction, what is the limit?

A. 4

B. 2

C. 1

2
D. The limit does not exist.
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Remark 3.9.3 Consider the limits

lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

lim
x→a

f(x)− f(a)

x− a
= f ′(a).

Notice that these limits give indeterminate forms of the type 0
0
. However, these limits are

equal to f ′(a), the derivative of f(x) at x = a. If you can compute f ′(a), then you have
computed the value of the limit!



Limits and Derivatives (AD9)

Activity 3.9.4 Use the limit definition of the derivative to compute the following limits.
Each limit is f ′(a), the derivative of some function f(x) at some point x = a. You need to
determine the function and the point to find the value of the limit: f ′(a).

(a) Notice that lim
x→0

e2+x − e2

x
is the derivative of ex at x = 2 (where x was used for h).

Given this observation, what is this limit equal to?

A. 2
B. e

C. e2

D. The limit does not exist.

(b) Consider lim
x→0

ln(1 + x)

x
. This limit is also the limit definition of some derivative at

some point. What is the value of this limit?

A. 1
B. 0

C. ln(2)
D. The limit does not exist.



Limits and Derivatives (AD9)

Activity 3.9.5 Compute the following limits using the limit defintion of the derivative at a
point.

(a) lim
x→0

sin(x)
x

(b) lim
x→0

tan(x)
x

(c) lim
x→0

cos(π
3
+ x)− 1

2

x



Limits and Derivatives (AD9)

Remark 3.9.6 When we compute a limit algebraically, we might encounter the indetermi-
nate form ∞

∞
but this means that limit can equal any number, infinity, or it might not exist. When we
encounter an indeterminate form, we just do not know (yet) what the value of the limit is.



Limits and Derivatives (AD9)

Activity 3.9.7 We can compute limits that give indeterminate forms via algebraic manipu-
lations. Consider

lim
x→+∞

2x2 + 1

x2 − 1
.

(a) Verify that this limit gives an indeterminate form of the type ∞
∞ .

(b) You can manipulate this fraction algebraically by dividing numerator and denominator
by x2. Then, notice that ± 1

x2 → 0 as x → ∞. Given these observations, what is the
given limit equal to?

A. 2

B. 1

C. 1

2
D. The limit does not exist.



Limits and Derivatives (AD9)

Activity 3.9.8 Look back at some limits that gave you an indeterminate form. Can you
use L’Hôpital’s Rule to find the limit? If using the L’Hôpital’s Rule is appropriate, then try
to compute the limit this way. It should give you the same result.



Limits and Derivatives (AD9)

Activity 3.9.9 In Activity 1.1.12, when we started to study limits, we encountered the
Squeeze Theorem and computed the limit lim

x→0

sin(x)
x

using this theorem. Let’s find new
ways to compute this limit.

(a) Thinking about x as the length of an interval h, this limit is actually equal to the value

of some derivative, so f ′(a) = lim
h→0

sin(h)
h

. What function f(x) and what point x = a

would lead to this limit? Use these to find f ′(a), the value of this limit (in a new way!).

(b) Verify, one more time, that this limit is indeed an indeterminate form. Then use
L’Hôpital’s Rule to find this limit (again, in another way!).



Limits and Derivatives (AD9)

Activity 3.9.10 For the following limits, check if they give an indeterminate form. If they
do, try to use L’Hôpital’s Rule. Does it help? It may or may not, or you may just need to
use the rule repeatedly. Either way, try to compute the value of the following limits.

(a) lim
x→0

sin(x)
x

(b) lim
x→0

ex − 1

x

(c) lim
x→∞

3x2 + 3

x2 + 2x

(d) lim
x→0+

ln(x)
−x

(e) lim
x→0+

ln(x)
1/x

(f) lim
x→0

sin2(3x)

5x3 − 3x2



Limits and Derivatives (AD9)

Activity 3.9.11 For each limit, explain if L’Hôpital’s Rule may be applied. If it can, explain
how to use this rule to find the limit.

(a)
lim
x→∞

−8x+ 3 ex

7x− 3 ex

(b)
lim
x→0

6 cos (8x)
4x− 7

(c)
lim
x→0

−9 cos (3x) + 9

−3x

(d)

lim
x→4

x2 − x− 12

x2 − 13x+ 36



Limits and Derivatives (AD9)

Activity 3.9.12 There are situations in which using L’Hôpital’s Rule does not help and you
do need some algebra skills! Consider the function r(x) = x√

x2+2
and suppose that we want

to find the limits as x tends to ±∞.

(a) Check that the limit as x → +∞ gives an indeterminate form ∞
∞ . Then try to use

L’Hôpital’s Rule... what happens? What if you use it again?

(b) We need to use algebra to handle this limit. Informally, we would like to cancel the
highest powers at the numerator and denominator. Look at the denominator,

√
x2 + 2.

We want to factor out an x2 under the square root. What do you get?

A.

√
x2

(
1 +

2

x

)

B.

√
x2

(
1 +

2

x2

)
C.
√
x2 (1 + x)

D.
√
x2 (1 + x2)

(c) Now we need to be careful when computing
√
x2 as

√
x2 = |x|. The absolute value

function |x| equals +x when we have a positive input and −x when we have a negative
output. So we have the two limits.

lim
x→+∞

x

|x|
√
(1 + 2

x2 )

lim
x→−∞

x

|x|
√
(1 + 2

x2 )

Thinking about what happens to the absolute values as you go towards positive or
negative infinity, find the values of these two limits... The two limits have different
values!



Chapter 4

Definite and Indefinite Integrals (IN)

Learning Outcomes
By the end of this chapter, you should be able to...

1. Use geometric formulas to compute definite integrals.

2. Approximate definite integrals using Riemann sums.

3. Determine basic antiderivatives.

4. Solve basic initial value problems.

5. Evaluate a definite integral using the Fundamental Theorem of Calculus.

6. Find the derivative of an integral using the Fundamental Theorem of Calculus.

7. Use definite integrals to find area under a curve.

8. Use definite integral(s) to compute the area bounded by several curves.

331



Geometry of Definite Integrals (IN1)

4.1 Geometry of Definite Integrals (IN1)

Learning Outcomes
• Use geometric formulas to compute definite integrals.



Geometry of Definite Integrals (IN1)

Definition 4.1.1 The definite integral for a positive function f(x) ≥ 0 between the points
x = a and x = b is the area between the function and the x-axis. We denote this quantity

as
∫ b

a

f(x) dx ♢



Geometry of Definite Integrals (IN1)

Remark 4.1.2 For some functions which have known geometric shapes (like pieces of lines or
circles) we can already compute these area exactly and we will do so in this section. But for
most functions we do not know quite yet how to compute these areas. In the next section, we
will see that because we can compute the areas of rectangles quite easily, we can always try
to approximate a shape with rectangles, even if this could be a very coarse approximation.



Geometry of Definite Integrals (IN1)

Activity 4.1.3 Consider the linear function f(x) = 2x. Sketch a graph of this function. Con-
sider the area between the x-axis and the function on the interval [0, 1]. What is

∫ 1

0
f(x) dx?

A. 1

B. 2

C. 3

D. 4



Geometry of Definite Integrals (IN1)

Activity 4.1.4 Consider the linear function f(x) = 4x. What is
∫ 1

0
f(x) dx?

A. 1

B. 2

C. 3

D. 4



Geometry of Definite Integrals (IN1)

Activity 4.1.5 Consider the linear function f(x) = 2x+2. Notice that on the interval [0, 1],
the shape formed between the graph and the x-axis is a trapezoid. What is

∫ 1

0
f(x) dx?

A. 1

B. 2

C. 3

D. 4



Geometry of Definite Integrals (IN1)

Activity 4.1.6 Consider the function f(x) =
√
4− x2. Notice that on the domain [−2, 2],

the shape formed between the graph and the x-axis is a semicircle. What is
∫ 2

−2
f(x) dx?

A. π

B. 2π

C. 3π

D. 4π



Geometry of Definite Integrals (IN1)

Definition 4.1.7 If a function f(x) ≤ 0 on [a, b], then we define the integral between a and
b to be∫ b

a

f(x) dx = (−1)× area between the graph of and the axis on the interval .

So the definite integral for a negative function is the ”negative” of the area between the
graph and the x-axis. ♢



Geometry of Definite Integrals (IN1)

Activity 4.1.8 Explain how to use geometric formulas for area to compute the following
definite integrals. For each part, sketch the function to support your explanation.

1. ∫ 6

1

(−3x+ 6) dx

2. ∫ 6

2

(−3x+ 6) dx

3. ∫ 5

1

(
−
√

−(x− 1)2 + 16

)
dx



Geometry of Definite Integrals (IN1)

Activity 4.1.9 The graph of g(t) and the areas A1, A2, A3 are given below.

Figure 57

(a) Find
∫ 3

3
g(t) dt

(b) Find
∫ 6

3
g(t) dt

(c) Find
∫ 10

0
g(t) dt

(d) Suppose that g(t) gives the velocity in fps at time t (in seconds) of a particle moving
in the vertical direction. A positive velocity indicates that the particle is moving up, a
negative velocity indicates that the particle is moving down. If the particle started at a
height of 3ft, at what height would it been after 3 seconds? After 6 seconds? After 10
seconds? At what time does the particle reach the highest point in this time interval?



Approximating Definite Integrals (IN2)

4.2 Approximating Definite Integrals (IN2)

Learning Outcomes
• Approximate definite integrals using Riemann sums.



Approximating Definite Integrals (IN2)

Activity 4.2.1 Suppose that a person is taking a walk along a long straight path and walks
at a constant rate of 3 miles per hour.

(a) On the left-hand axes provided in Figure 82, sketch a labeled graph of the velocity
function v(t) = 3.

Figure 58 At left, axes for plotting y = v(t); at right, for plotting y = s(t).
Note that while the scale on the two sets of axes is the same, the units on the right-
hand axes differ from those on the left. The right-hand axes will be used in question
(d).

(b) How far did the person travel during the two hours? How is this distance related to
the area of a certain region under the graph of y = v(t)?

(c) Find an algebraic formula, s(t), for the position of the person at time t, assuming that
s(0) = 0. Explain your thinking.

(d) On the right-hand axes provided in Figure 82, sketch a labeled graph of the position
function y = s(t).

(e) For what values of t is the position function s increasing? Explain why this is the case
using relevant information about the velocity function v.



Approximating Definite Integrals (IN2)

Activity 4.2.2 Suppose that a person is walking in such a way that her velocity varies
slightly according to the information given in Table 83 and graph given in Figure 84.

t v(t)

0.00 1.500

0.25 1.789

0.50 1.938

0.75 1.992

1.00 2.000

1.25 2.008

1.50 2.063

1.75 2.211

2.00 2.500

Table 59 Velocity data for the person
walking.

Figure 60 The graph of y = v(t).

(a) Using the grid, graph, and given data appropriately, estimate the distance traveled
by the walker during the two hour interval from t = 0 to t = 2. You should use
time intervals of width ∆t = 0.5, choosing a way to use the function consistently to
determine the height of each rectangle in order to approximate distance traveled.

(b) How could you get a better approximation of the distance traveled on [0, 2]? Explain,
and then find this new estimate.

(c) Now suppose that you know that v is given by v(t) = 0.5t3−1.5t2+1.5t+1.5. Remember
that v is the derivative of the walker’s position function, s. Find a formula for s so
that s′ = v.

(d) Based on your work in (c), what is the value of s(2) − s(0)? What is the meaning of
this quantity?



Approximating Definite Integrals (IN2)

Definition 4.2.3 If f(x) is a function defined on the interval [a, b], a Riemann sum for f
on [a, b] is a sum of the form

n∑
i=1

f(si) · (xi − xi−1),

where a = x0 < x1 < . . . < xn−1 < xn = b and where si is a point in the i-th subinterval. ♢



Approximating Definite Integrals (IN2)

Remark 4.2.4 The Riemann sum in Definition 4.2.3 is almost a sum of the areas of rectan-
gles. The height of the i-th rectangle is f(si) and the width is xi − xi−1.



Approximating Definite Integrals (IN2)

Activity 4.2.5 Why is the Riemann sum in Definition 4.2.3 only almost a sum of the areas
of rectangles?

A. The function is not continuous.

B. The function is not differentiable.

C. Some of the values f(si) are negative.

D. The x-coordinates si are not equally spaced.



Approximating Definite Integrals (IN2)

Activity 4.2.6 Why is the Riemann sum in Figure 85 only almost a sum of the areas of
rectangles?

A. The subintervals have different widths.

B. The function is not differentiable.

C. Some of the values f(si) are negative.

D. The x-coordinates si are not equally spaced.



Approximating Definite Integrals (IN2)

Activity 4.2.7 There are some special Riemann sums that are often easier to work with
than the general Riemann sum of Definition 4.2.3.

In a left Riemann sum, the point si in each subinterval is the left endpoint of the
subinterval. That is,

si = xi−1.
Consider the left Riemann sum for f(x) = x2/3 on the interval [2, 4] with 3 subintervals.

(a) What are a and b in this case?

(b) What is the value of n?

(c) What are the values of the xi?

(d) What are the values of the si?

(e) What do you notice about the subinterval widths xi − xi−1?

(f) What is the value of the left Riemann sum?



Approximating Definite Integrals (IN2)

Activity 4.2.8 The right Riemann sum is similar to the left Riemann sum, but the point
si in each subinterval is the right endpoint of the subinterval instead of the left endpoint.

(a) Repeat the tasks in Activity 4.2.7 for the right sum, again with 3 subintervals on the
interval [2, 4].



Approximating Definite Integrals (IN2)

Activity 4.2.9 The midpoint Riemann sum is similar to the left and right Riemann
sums, but the point si in each subinterval is the midpoint of the subinterval.

(a) What is the only thing that is different from Activity 4.2.7 and Activity 4.2.8 when
computing the midpoint Riemann sum? Describe the difference precisely.The students
should find the values of si for the midpoint Riemann sum.

(b) What is the value of this midpoint Riemann sum?



Approximating Definite Integrals (IN2)

Activity 4.2.10 Explain how to approximate the area under the curve

f(x) = −1

5
(x− 4)(x− 10)(x− 12)

on the interval [4, 10] using a right Riemann sum with 3 subintervals.

4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10
11
12

x

y
f(x) = 1

5
(x − 4)(x − 10)(x − 12)



Elementary Antiderivatives (IN3)

4.3 Elementary Antiderivatives (IN3)

Learning Outcomes
• Determine basic antiderivatives.



Elementary Antiderivatives (IN3)

Definition 4.3.1 If g and G are functions such that G′ = g, we say that G is an antideriva-
tive of g.

The collection of all antiderivatives of g is called the general antiderivative or in-
definite integral, denoted by

∫
g(x) dx. All antiderivatives differ by a constant C (since

d
dx
[C] = 0), so we may write: ∫

g(x) dx = G(x) + C.

♢



Elementary Antiderivatives (IN3)

Activity 4.3.2 Consider the function f(x) = cosx. Which of the following could be F (x),
an antiderivative of f(x)?

A. sinx

B. cosx

C. tanx

D. secx



Elementary Antiderivatives (IN3)

Activity 4.3.3 Consider the function f(x) = x2. Which of the following could be F (x), an
antiderivative of f(x)?

A. 2x

B. 1

3
x3

C. x3

D. 2

3
x3



Elementary Antiderivatives (IN3)

Remark 4.3.4 We now note that whenever we know the derivative of a function, we have
a function-derivative pair, so we also know the antiderivative of a function. For instance, in
Activity 4.3.2 we could use our prior knowledge that

d

dx
[sin(x)] = cos(x),

to determine that F (x) = sin(x) is an antiderivative of f(x) = cos(x). F and f together
form a function-derivative pair. Every elementary derivative rule leads us to such a pair, and
thus to a known antiderivative.

In the following activity, we work to build a list of basic functions whose antiderivatives
we already know.



Elementary Antiderivatives (IN3)

Activity 4.3.5 Use your knowledge of derivatives of basic functions to complete Table 87
of antiderivatives. For each entry, your task is to find a function F whose derivative is the
given function f .
Table 61 Familiar basic functions and their antiderivatives.

given function, f(x) antiderivative, F (x)

k, (k is constant)
xn, n ̸= −1
1
x
, x > 0

sin(x)
cos(x)
sec(x) tan(x)
csc(x) cot(x)
sec2(x)
csc2(x)
ex

ax (a > 1)
1

1+x2

1√
1−x2



Elementary Antiderivatives (IN3)

Activity 4.3.6 Using this information, which of the following is an antiderivative for f(x) =
5 sin(x)− 4x2?

A. F (x) = −5 cos(x) + 4
3
x3.

B. F (x) = 5 cos(x) + 4
3
x3.

C. F (x) = −5 cos(x)− 4
3
x3.

D. F (x) = 5 cos(x)− 4
3
x3.



Elementary Antiderivatives (IN3)

Activity 4.3.7 Find the general antiderivative for each function.

(a)
f(x) = −4 sec2 (x)

(b)
f(x) =

8√
x



Elementary Antiderivatives (IN3)

Activity 4.3.8 Find each indefinite integral.

(a) ∫
(−9x4 − 7x2 + 4) dx

(b) ∫
3 ex dx



Initial Value Problems (IN4)

4.4 Initial Value Problems (IN4)

Learning Outcomes
• Solve basic initial value problems.



Initial Value Problems (IN4)

Note 4.4.1 In this section we will discuss the relationship between antiderivatives and solv-
ing simple differential equations. A differential equation is an equation that has a derivative.
For this section we will focus on differential equations of the form

dy

dx
= f(x).

Our goal is to find a relationship of y(x) that satisfies the differential equation. We can solve
for y(x) by finding the antiderivative of f(x).



Initial Value Problems (IN4)

Activity 4.4.2 Which of the following equations for y(x) satisfies the differential equation

dy

dx
= x2 + 2x.

A. y(x) =
x3

3
+ x2 + 4

B. y(x) = 2x+ 2

C. y(x) =
x3

3
+ x2 + 10

D. y(x) =
x3

3
+ x2

E. y(x) = 2x



Initial Value Problems (IN4)

Remark 4.4.3 In Activity 4.4.2 there are more than one solution that satisfies the differential
equation. In fact their is a family of functions that satisfies the differential equation, that is

f(x) =
x3

3
+ x2 + c1,

where c1 is an arbitrary constant yet to be defined. To find c1 we have to have some initial
value for the differential equation, y(x0) = y0, where the point (x0, y0) is the starting point
for the differential equation. In general this section we will focus on solving initial value
problems (differential equation with an initial condition) of the form,

dy

dx
= f(x), y(x0) = y0.



Initial Value Problems (IN4)

Activity 4.4.4 Which of the following equations for y(x) satisfies the differential equation
and initial condition,

dy

dx
= x2 + 2x, y(3) = 16.

A. y(x) =
x3

3
+ x2 − 4

B. y(x) =
x3

3
+ x2 + 2

C. y(x) =
x3

3
+ x2 − 2

D. y(x) =
x3

3
+ x2 + 16



Initial Value Problems (IN4)

Activity 4.4.5 Which of the following functions satisfies the initial value problem,

dy

dx
= sin(x), y(0) = 1.

A. y(x) = cos(x)

B. y(x) = cos(x) + 2

C. y(x) = cos(x) + 1

D. y(x) = − cos(x)

E. y(x) = − cos(x) + 2



Initial Value Problems (IN4)

Activity 4.4.6 One of the applications of initial value problems is calculating the distance
traveled from a point based on the velocity of the object. Given that the velocity of the of
an object in km/hr is approximated by v(t) = cos(t) + 1, what is the approximate distance
travelled by the object after 1 hour?

A. s(1) ≈ 1 km

B. s(1) ≈ 0.1585 km

C. s(1) ≈ 1.8415 km

D. s(1) ≈ 2.3415 km



Initial Value Problems (IN4)

Activity 4.4.7 So far we have only been going from velocity to position of an object.
Recall that to find the acceleration of an object, you can take the derivative of the velocity
of an object. Let use say we have the acceleration of a falling object in m/s2 given by
a(t) = −9.8.What is the velocity of the falling object, if the initial velocity is given by
v(0) = 0 m/s.

A. v(t) = −9.8t m

B. v(t) = −9.8t m/s

C. v(t) = 9.8t m/s

D. v(t) = 9.8t+ 1 m

What is the position of the object, if the initial position is given by s(0) = 10 m.

A. s(t) = 4.9t+ 10 m

B. s(t) = −4.9t2 + 14.9 m

C. s(t) = −4.9t2 + 10 m

D. s(t) = 4.9t+ 5.1 m



Initial Value Problems (IN4)

Activity 4.4.8 Let f ′(x) = −12x− 6. Find f(x) such that f(5) = −179.



FTC for Definite Integrals (IN5)

4.5 FTC for Definite Integrals (IN5)

Learning Outcomes
• Evaluate a definite integral using the Fundamental Theorem of Calculus.



FTC for Definite Integrals (IN5)

Activity 4.5.1 Find the area beteween f(x) = 1
2
x+ 2 and the x-axis from x = 2 to x = 6.

Figure 62



FTC for Definite Integrals (IN5)

Activity 4.5.2 Approximate the area under the curve f(x) = (x − 1)2 + 2 on the interval
[1, 5] using a left Riemann sum with four uniform subdivisions. Draw your rectangles on the
graph.

Figure 63



FTC for Definite Integrals (IN5)

Definition 4.5.3 Let f(x) be a continuous function on the interval [a, b]. Divide the interval
into n subdivisions of equal width, ∆x, and choose a point xi in each interval. Then, the
definite integral of f(x) from a to b is

lim
n→∞

n∑
i=1

f(xi)∆x =

∫ b

a

f(x)dx

♢



FTC for Definite Integrals (IN5)

Activity 4.5.4 How does
∫ 6

2

(
1

2
x+ 2

)
dx relate to Activity 4.5.1? Could you use Activ-

ity 4.5.1 to find
∫ 4

0

(
1

2
x+ 2

)
dx? What about

∫ 7

1

(
1

2
x+ 2

)
dx?



FTC for Definite Integrals (IN5)

Remark 4.5.5 Properties of Definite Integrals.

1. If f is defined at x = a, then
∫ a

a

f(x) dx = 0.

2. If f is integrable on [a, b], then
∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

3. If f is integrable on [a, b] and c is in [a, b], then
∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

4. If f is integrable on [a, b] and k is a constant, then kf is integrable on [a, b] and∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx.

5. If f and g are integrable on [a, b], then f ± g are integrable on [a, b] and
∫ b

a

[f(x) ±

g(x)] dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx.



FTC for Definite Integrals (IN5)

Activity 4.5.6 Suppose that
∫ 5

1

f(x) dx = 10 and
∫ 7

5

f(x) dx = 4.Find each of the follow-
ing.

(a)
∫ 7

1

f(x) dx

(b)
∫ 1

5

f(x) dx

(c)
∫ 7

7

f(x) dx

(d) 3

∫ 7

5

f(x) dx



FTC for Definite Integrals (IN5)

Observation 4.5.7 We’ve been looking at two big things in this chapter: antiderivatives
and the area under a curve. In the early days of the development of calculus, they were
not known to be connected to one another. The integral sign wasn’t originally used in
both instances. (Gottfried Leibniz introduced it as an elongated S to represent the sum
when finding the area.) Connecting these two seemingly separate problems is done by the
Fundamental Theorem of Calculus



FTC for Definite Integrals (IN5)

Activity 4.5.8 Evaluate the following definite integrals. Include a sketch of the graph with
the area you’ve found shaded in. Approximate the area to check to see if your definite
integral answer makes sense. (Note: Just a guess, you don’t have to use Riemann sums. Use
the grid to help.)

(a)
∫ 2

0

(
x2 + 3

)
dx

Figure 64

(b)
∫ 4

1

(√
x
)
dx

Figure 65



FTC for Definite Integrals (IN5)

(c)
∫ π/2

−π/4

(cosx) dx

Figure 66



FTC for Definite Integrals (IN5)

Activity 4.5.9 Find the area between f(x) = 2x− 6 on the interval [0, 8] using

1. geometry

2. the definite integral

Figure 67
What do you notice?



FTC for Definite Integrals (IN5)

Activity 4.5.10 Find the area bounded by the curves f(x) = ex − 2, the x-axis, x = 0, and
x = 1.

Figure 68



FTC for Definite Integrals (IN5)

Activity 4.5.11 Set up a definite integral that represents the shaded area. Then find the
area of the given region using the definite integral.

(a) y = 1
x2

Figure 69

(b) y = 3x2 − x3

Figure 70



FTC for Definite Integrals (IN5)

Activity 4.5.12 Explain how to compute the exact value of each of the following definite
integrals using the Fundamental Theorem of Calculus. Leave all answers in exact form, with
no decimal approximations.

(a) ∫ −2

−3

(
−9x3 − 9x2 + 1

)
dx

(b) ∫ 5
4
π

7
6
π

(−3 sin (x)) dx

(c) ∫ 6

2

(3 ex) dx



FTC for Derivatives of Integrals (IN6)

4.6 FTC for Derivatives of Integrals (IN6)

Learning Outcomes
• Find the derivative of an integral using the Fundamental Theorem of Calculus.



FTC for Derivatives of Integrals (IN6)

Note 4.6.1 In this section we extend the Fundamental Theorem of Calculus discussed in
Section 4.5 to include taking the derivatives of integrals. We will call this addition to the
Fundamental Theorem of Calculus (FTC) part II. First we will introduce part II and then
discuss the implications of this addition.



FTC for Derivatives of Integrals (IN6)

Activity 4.6.2 For the following activity we will explore the Fundamental Theorem of
Calculus Part II.

(a) Given that A(x) =
∫ x

a
t3 dt, then by the Fundamental Theorem of Calculus Part I,

A. A(x) = x3 − a3

B. A(x) = a4 − x4

C. A(x) =
1

4
(x4 − a4)

D. A(x) = 3x2

(b) Using what you found for A(x), what is A′(x)

A. A′(x) = 3x2

B. A′(x) = 4a3 − 4x3

C. A′(x) = x3

D. A′(x) = 6x

(c) Use the Fundamental Theorem of Calculus Part II to find A′(x). What do you notice
between what you got above and using FTC Part II? Which method do you prefer?

A. A′(x) = 3x2

B. A′(x) = 4a3 − 4x3

C. A′(x) = x3

D. A′(x) = 6x



FTC for Derivatives of Integrals (IN6)

Activity 4.6.3 Given A(x) =
∫ b

x
et dt, what is A′(x)?

A. A′(x) = −ex

B. A′(x) = ex

C. A′(x) = eb − ex

D. A′(x) = ex − eb



FTC for Derivatives of Integrals (IN6)

Observation 4.6.4 For the first two activities we have only explored when the function of
the limits of the integrand are x. Now we want to see what happens when the limits are
more complicated. To do this we will follow a similar procedure as that done in activity 1.



FTC for Derivatives of Integrals (IN6)

Activity 4.6.5 Recall that by the Fundamental Theorem of Calculus Part I,
∫ b

a
f(t) dt =

F (b)− F (a).

(a) Let A(x) =
∫ x2

x
f(t) dt and re-write using FTC Part I.

(b) Using what you got find A′(x). Explain what derivative rule(s) you used.

(c) Using what you found what is the derivative of A(x) =
∫ x2

x
(t+ 2) dt?

A. A′(x) = 2x(x+ 2)− (x+ 2)

B. A′(x) = (x+ 2)− 2x(x2 + 2)

C. A′(x) = (x2 + 2)− (x+ 2)

D. A′(x) = 2x(x2 + 2)− (x+ 2)



FTC for Derivatives of Integrals (IN6)

Remark 4.6.6 Now we have some thoughts of how to generalize the FTC Part II when the
limts are more complicated.



FTC for Derivatives of Integrals (IN6)

Activity 4.6.7 Given A(x) =
∫ x5

x3 (sin(t)− 2) dt, what is A′(x)?



Area Under Curves (IN7)

4.7 Area Under Curves (IN7)

Learning Outcomes
• Use definite integrals to find area under a curve.



Area Under Curves (IN7)

Remark 4.7.1 A geometrical interpretation of

lim
n→∞

n∑
i=1

f(xi)∆x =

∫ b

a

f(x)dx

(Definition 4.5.3) defines
∫ b

a
f(x)dx as the net area between the graph of y = f(x) and the

x-axis. By net area, we mean the area above the x-axis (when f(x) is positive) minus the
area below the x-axis (when f(x) is negative).

1 2 3 4 5

2
4
6
8

10

1 2 3 4 5

2
4
6
8

10

1 2 3 4 5

2
4
6
8

10

Figure 71 Improving approximations of
∫ 5

0
(x− 2)(x− 4)dx



Area Under Curves (IN7)

Activity 4.7.2

(a) Write the net area between f(x) = 6x2 − 18x and the x-axis from x = 2 to x = 7 as
a definite integral.

(b) Evaluate this definite integral to verify the net area is equal to 265 square units.



Area Under Curves (IN7)

Observation 4.7.3 In order to find the total area between a curve and the x-axis, one must
break up the definite integral at points where f(x) = 0, that is, wherever f(x) may change
from positive to negative, or vice versa.

1 2 3 4 5

2

4

6

8

10

1 2 3 4 5

2

4

6

8

10

Figure 72 Partitioning
∫ 5

0
(x− 2)(x− 4)dx at x = 2 and x = 4.

Since f(x) = (x − 2)(x − 4) is zero when x = 2 and x = 4, we may compute the total
area between y = (x− 2)(x− 4) and the x-axis using absolute values as follows:

Area =

∣∣∣∣∫ 2

0

(x− 2)(x− 4)dx

∣∣∣∣+ ∣∣∣∣∫ 4

2

(x− 2)(x− 4)dx

∣∣∣∣+ ∣∣∣∣∫ 5

4

(x− 2)(x− 4)dx

∣∣∣∣



Area Under Curves (IN7)

Activity 4.7.4 Follow these steps to find the total area between f(x) = 6 x2 − 18x and the
x-axis from x = 2 to x = 7.

(a) Find all values for x where f(x) = 6 x2 − 18x is equal to 0.

(b) Only one such value is between x = 2 and x = 7. Use this value to fill in the ? below,
then verify that its value is 279 square units.

Area =

∣∣∣∣∫ ?

2

(
6x2 − 18x

)
dx

∣∣∣∣+ ∣∣∣∣∫ 7

?

(
6x2 − 18x

)
dx

∣∣∣∣



Area Under Curves (IN7)

Activity 4.7.5 Answer the following questions concerning f(x) = 6 x2 − 96.

(a) What is the total area between f(x) = 6 x2− 96 and the x-axis from x = −1 to x = 9?

(b) What is the net area between f(x) = 6 x2 − 96 and the x-axis from x = −1 to x = 9?



Area Between Curves (IN8)

4.8 Area Between Curves (IN8)

Learning Outcomes
• Use definite integral(s) to compute the area bounded by several curves.



Area Between Curves (IN8)

Remark 4.8.1 In Section 4.7, we learned how to find the area between a curve and the
x-axis (f(x) = 0) using a definite integral. What if we want the area between any two
functions? What if the x-axis is not one of the boundaries?

In this section, we’ll investigate how a definite integral may be used to represent the area
between two curves.



Area Between Curves (IN8)

Activity 4.8.2 Consider the functions given by f(x) = 5− (x− 1)2 and g(x) = 4− x.

(a) Use algebra to find the points where the graphs of f and g intersect.

(b) Sketch an accurate graph of f and g on the xy plane, labeling the curves by name and
the intersection points with ordered pairs.

(c) Find and evaluate exactly an integral expression that represents the area between
y = f(x) and the x-axis on the interval between the intersection points of f and g.
Shade this area in your sketch.

(d) Find and evaluate exactly an integral expression that represents the area between
y = g(x) and the x-axis on the interval between the intersection points of f and g.
Shade this area in your sketch.

(e) Let’s denote the area between y = f(x) and the x-axis as Af and the area between
y = g(x) and the x-axis as Ag. How could we use Af and Ag to find exact area between
f and g between their intersection points?

A. We could find Af+Ag to find the area
between the curves.

B. We could find Af−Ag to find the area

between the curves.
C. We could find Ag−Af to find the area

between the curves.



Area Between Curves (IN8)

Note 4.8.3 We’ve seen from Activity 4.8.2 that a natural way to think about the area
between two curve is as the area beneath the upper curve minus the area beneath the lower
curve.



Area Between Curves (IN8)

Activity 4.8.4 We now look for a general way of writing definite integrals for the area
between two given curves, f(x) and g(x). Consider this area, illustrated in Figure 104.

Figure 73 Area between f(x) and g(x).

(a) How could we represent the shaded area in Figure 104?

A.
∫ a

b

f(x) dx−
∫ a

b

g(x) dx

B.
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

C.
∫ a

b

g(x) dx−
∫ a

b

f(x) dx

D.
∫ b

a

g(x) dx−
∫ b

a

f(x) dx

(b) The two definite integrals above can be rewritten as one definite integral using the sum
and difference property of definite integrals:
If f and g are continuous functions, then∫ b

a

(f(x)± g(x)) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

Use the property above to represent the shaded area in Figure 104 using one definite
integral.

A.
∫ a

b

(f(x)− g(x)) dx

B.
∫ b

a

(f(x)− g(x)) dx

C.
∫ a

b

(g(x)− f(x)) dx

D.
∫ b

a

(g(x)− f(x)) dx



Area Between Curves (IN8)

Fact 4.8.5 If two curves y = f(x) and y = g(x) intersect at (a, g(a)) and (b, g(b)), and
for all x such that a ≤ x ≤ b, f(x) ≥ g(x), then the area between the curves is A =∫ b

a
(f(x)− g(x)) dx.



Area Between Curves (IN8)

Activity 4.8.6 In each of the following problems, our goal is to determine the area of the
region described. For each region, (i) determine the intersection points of the curves, (ii)
sketch the region whose area is being found, (iii) draw and label a representative slice, and
(iv) state the area of the representative slice. Then, state a definite integral whose value
is the exact area of the region, and evaluate the integral to find the numeric value of the
region’s area.

(a) The finite region bounded by y =
√
x and y = 1

4
x.

(b) The finite region bounded by y = 12− 4x2 and y = x2 − 8.

(c) The area bounded by the y-axis, f(x) = cos(x), and g(x) = sin(x), where we consider
the region formed by the first positive value of x for which f and g intersect.

(d) The finite regions between the curves y = x3 − 2x and y = x2.



Area Between Curves (IN8)

Activity 4.8.7 Let R be the finite region bounded by the graphs of y = (x+ 5)2 − 1 and
y = 7 x+ 34.

Sketch an illustration of R, and then explain how to express the area of R in the following
two ways:(Do not evaluate either definite integral.)

1. As a definite integral with respect to x.

2. As a definite integral with respect to y.



Chapter 5

Techniques of Integration (TI)

Learning Outcomes
How do we use various techniques to integrate less simple functions?
By the end of this chapter, you should be able to...

1. Evaluate various integrals via the substitution method.

2. Compute integrals using integration by parts.

3. Compute integrals involving products of trigonometric functions.

4. Use trigonometric substitution to compute indefinite integrals.

5. I can integrate functions using a table of integrals.

6. I can integrate functions using the method of partial fractions.

7. I can select appropriate strategies for integration.

8. I can compute improper integrals.

407



Substitution Method (TI1)

5.1 Substitution Method (TI1)

Learning Outcomes
• Evaluate various integrals via the substitution method.



Substitution Method (TI1)

Activity 5.1.1 Answer the following.

(a) Using the chain rule, which of these is the derivative of ex3 with respect to x?

A. e3x
2

B. x3ex
3−1

C. 3x2ex
3

D. 1

4
ex

4

(b) Based on this result, which of these would you suspect to equal
∫

x2ex
3

dx?

A. ex
3+1 + C

B. 1

3x
ex

3+1 + C

C. 3ex
3

+ C

D. 1

3
ex

3

+ C



Substitution Method (TI1)

Activity 5.1.2 Recall that if u is a function of x, then d

dx
[u7] = 7u6u′ by the Chain Rule

(Theorem 2.5.5).
For each question, choose from the following.

A. 1

7
u7 + C B. u7 + C C. 7u7 + C D. 6

7
u7 + C

(a) What is
∫

7u6u′ dx?

(b) What is
∫

u6u′ dx?

(c) What is
∫

6u6u′ dx?



Substitution Method (TI1)

Activity 5.1.3 Based on these activities, which of these choices seems to be a viable strategy
for integration?

A. Memorize an integration formula for every possible function.

B. Attempt to rewrite the integral in the form
∫

g′(u)u′ dx = g(u) + C.

C. Keep differentiating functions until you come across the function you want to integrate.



Substitution Method (TI1)

Fact 5.1.4 By the chain rule,

d

dx
[g(u) + C] = g′(u)u′.

There is a dual integration technique reversing this process, known as the substitution
method.

This technique involves choosing an appropriate function u in terms of x to rewrite the
integral as follows: ∫

f(x) dx = · · · =
∫

g′(u)u′ dx = g(u) + C.



Substitution Method (TI1)

Observation 5.1.5 Recall that du

dx
= u′, and so du = u′ dx. This allows for the following

common notation: ∫
f(x) dx = · · · =

∫
g′(u) du = g(u) + C.

Therefore, rather than dealing with equations like u′ =
du

dx
= x2, we will prefer to write

du = x2 dx.



Substitution Method (TI1)

Activity 5.1.6 Consider
∫

x2ex
3

dx, which we conjectured earlier to be 1

3
ex

3
+ C.

Suppose we decided to let u = x3.

(a) Compute du

dx
= ? , and rewrite it as du = ? dx.

(b) This ? dx doesn’t appear in
∫

x2ex
3

dx exactly, so use algebra to solve for x2 dx in
terms of du.

(c) Replace x2 dx and x3 with u du terms to rewrite
∫

x2ex
3

dx as
∫

1

3
eu du.

(d) Solve
∫

1

3
eu du in terms of u, then replace u with x3 to confirm our original conjecture.



Substitution Method (TI1)

Here is how one might write out the explanation of how to find
∫

x2ex
3

dx from start to
finish: ∫

x2ex
3

dx Let u = x3

du = 3x2 dx

1

3
du = x2 dx∫

x2ex
3

dx =

∫
e(x

3)(x2 dx)

=

∫
eu

1

3
du

=
1

3
eu + C

=
1

3
ex

3

+ C

□



Substitution Method (TI1)

Activity 5.1.8 Which step of the previous example do you think was the most important?

A. Choosing u = x3.

B. Finding du = 3x2 dx and 1

3
du = x2 dx.

C. Substituting
∫

x2ex
3

dx with
∫

1

3
eu du.

D. Integrating
∫

1

3
eu du =

1

3
eu + C.

E. Unsubstituting 1

3
eu + C to get 1

3
ex

3
+ C.



Substitution Method (TI1)

Activity 5.1.9 Below are two correct solutions to the same integral, using two different
choices for u. Which method would you prefer to use yourself?

∫
x
√
4x+ 4 dx Let u = x+ 1

4u = 4x+ 4

x = u− 1

du = dx∫
x
√
4x+ 4 dx =

∫
(u− 1)

√
4u du

=

∫
(2u3/2 − 2u1/2) du

=
4

5
u5/2 − 4

3
u3/2 + C

=
4

5
(x+ 1)5/2

− 4

3
(x+ 1)3/2 + C

∫
x
√
4x+ 4 dx Let u =

√
4x+ 4

u2 = 4x+ 4

x =
1

4
u2 − 1

dx =
1

2
u du∫

x
√
4x+ 4 dx =

∫ (
1

4
u2 − 1

)
(u)

(
1

2
u du

)
=

∫ (
1

8
u4 − 1

2
u2

)
du

=
1

40
u5 − 1

6
u3 + C

=
1

40
(4x+ 4)5/2

− 1

6
(4x+ 4)3/2 + C



Substitution Method (TI1)

Activity 5.1.10 Suppose we wanted to try the substitution method to find
∫

ex cos(ex +
3) dx. Which of these choices for u appears to be most useful?

A. u = x, so du = dx

B. u = ex, so du = ex dx

C. u = ex + 3, so du = ex dx

D. u = cos(x), so du = − sin(x) dx

E. u = cos(ex+3), so du = ex sin(ex+3) dx



Substitution Method (TI1)

Activity 5.1.11 Complete the following solution using your choice from the previous activity
to find

∫
ex cos(ex + 3) dx.

∫
ex cos(ex + 3) dx Let u = ?

du = ? dx∫
ex cos(ex + 3) dx =

∫
? du

= · · ·
= sin(ex + 3) + C



Substitution Method (TI1)

Activity 5.1.12 Complete the following integration by substitution to find
∫

x3

x4 + 4
dx.

∫
x3

x4 + 4
dx Let u = ?

du = ? dx

? du = ? dx∫
x3

x4 + 4
dx =

∫
?

?
du

= · · ·

=
1

4
ln |x4 + 4|+ C



Substitution Method (TI1)

Activity 5.1.13 Given that
∫

x3

x4 + 4
dx =

1

4
ln |x4 + 4| + C, what is the value of∫ 2

0

x3

x4 + 4
dx?

A. 8

20

B. − 8

20

C. 1

4
ln(20)− 1

4
ln(4)

D. 1

4
ln(4)− 1

4
ln(20)



Substitution Method (TI1)

Activity 5.1.14 What’s wrong with the following computation?∫ 2

0

x3

x4 + 4
dx Let u = x4 + 4

du = 4x3 dx

1

4
du = x3 dx∫ 2

0

x3

x4 + 4
dx =

∫ 2

0

1/4

u
du

=

[
1

4
ln |u|

]2
0

=
1

4
ln 2− 1

4
ln 0

A. The wrong u substitution was made.

B. The antiderivative of 1/4

u
was wrong.

C. The x values 0, 2 were plugged in for the variable u.



Substitution Method (TI1)

Here’s one way to show the computation of this definite integral by tracking x values in
the bounds. ∫ 2

0

x3

x4 + 4
dx Let u = x4 + 4

du = 4x3 dx

1

4
du = x3 dx∫ x=2

x=0

x3

x4 + 4
dx =

∫ x=2

x=0

1/4

u
du

=

[
1

4
ln |u|

]x=2

x=0

=

[
1

4
ln |x4 + 4|

]x=2

x=0

=
1

4
ln(20)− 1

4
ln(4)

□



Substitution Method (TI1)

Instead of unsubstituting u values for x values, definite integrals may be computed by also
substituting x values in the bounds with u values. Use this idea to complete the following
solution: ∫ 3

1

x2ex
3

dx Let u = ?

du = 3x2 dx

1

3
du = x2 dx∫ 3

1

x2ex
3

dx =

∫ x=3

x=1

e(x
3)(x2 dx)

=

∫ u=?

u=?

eu
1

3
du

=

[
1

3
eu
] ?

?

= ?

□



Substitution Method (TI1)

Here is how one might write out the explanation of how to find
∫ 3

1

x2ex
3

dx from start
to finish by leaving bounds in terms of x instead:∫ 3

1

x2ex
3

dx Let u = x3

du = 3x2 dx

1

3
du = x2 dx∫ 3

1

x2ex
3

dx =

∫ x=3

x=1

e(x
3)(x2 dx)

=

∫ x=3

x=1

eu
1

3
du

=

[
1

3
eu
]x=3

x=1

=

[
1

3
ex

3

]x=3

x=1

=
1

3
e3

3 − 1

3
e1

3

=
1

3
e27 − 1

3
e

□



Substitution Method (TI1)

Activity 5.1.18 Use substitution to show that∫ 4

1

e
√
x

√
x
dx = 2e2 − 2e.



Substitution Method (TI1)

Activity 5.1.19 Use substitution to show that∫ π/4

0

sin(2θ) dθ =
1

2
.



Substitution Method (TI1)

Activity 5.1.20 Use substitution to show that∫
u5(u3 + 1)1/3 du =

1

7
(u3 + 1)7/3 − 1

4
(u3 + 1)4/3 + C.



Substitution Method (TI1)

Activity 5.1.21 Consider
∫

(3x− 5)2 dx.

(a) Solve this integral using substitution.

(b) Replace (3x − 5)2 with (9x2 − 30x + 25) in the original integral, the solve using the
reverse power rule.

(c) Which method did you prefer?



Substitution Method (TI1)

Activity 5.1.22 Consider
∫

tan(x) dx.

(a) Replace tan(x) in the integral with a fraction involving sine and cosine.

(b) Use substitution to solve the integral.



Integration by Parts (TI2)

5.2 Integration by Parts (TI2)

Learning Outcomes
• Compute integrals using integration by parts.



Integration by Parts (TI2)

Activity 5.2.1 Answer the following.

(a) Using the product rule, which of these is derivative of x3ex with respect to x?

A. 3x2ex

B. 3x2ex + x3ex

C. 3x2ex−1

D. 1

4
x4ex

(b) Based on this result, which of these would you suspect to equal
∫

3x2ex + x3ex dx?

A. x3ex + C

B. x3ex +
1

4
x4ex + C

C. 6xex + 3x2ex + C

D. 6xex + 3x2ex + 3x2ex + x3ex + C



Integration by Parts (TI2)

Activity 5.2.2 Answer the following.

(a) Which differentiation rule is easier to implement?

A. Product Rule B. Chain Rule

(b) Which differentiation strategy do you expect to be easier to reverse?

A. Product Rule B. Chain Rule



Integration by Parts (TI2)

Activity 5.2.3 Answer the following.

(a) Which of the following equations is equivalent to the formula d

dx
[uv] = u′v + uv′?

A. uv′ = − d

dx
(uv)− vu′

B. uv′ = − d

dx
(uv) + vu′

C. uv′ =
d

dx
(uv) + vu′

D. uv′ =
d

dx
(uv)− vu′

(b) Which of these is the most concise result of integrating both sides with respect to x?

A.
∫

(uv′) dx = uv −
∫
(vu′) dx

B.
∫

(u) dv = uv −
∫
(v) du

C.
∫

(uv′) dx = uv −
∫
(vu′) dx+ C

D.
∫

(u) dv = uv −
∫
(v) du+ C



Integration by Parts (TI2)

Fact 5.2.4 By the product rule, d

dx
[uv] = u′v + uv′ and, subsequently, uv′ = d

dx
[uv] − u′v.

There is a dual integration technique reversing this process, known as integration by parts.
This technique involves using algebra to rewrite an integral of a product of functions in

the form
∫

(u) dv and then using the equality

∫
(u) dv = uv −

∫
(v) du.



Integration by Parts (TI2)

Activity 5.2.5 Consider
∫

xex dx. Suppose we decided to let u = x.

(a) Compute du

dx
= ? , and rewrite it as du = ? dx.

(b) What is the best candidate for dv?

A. dv = x dx

B. dv = ex
C. dv = x

D. dv = ex dx

(c) Given that dv = ex dx, find v = ? .

(d) Show why
∫

xex dx may now be rewritten as xex −
∫

ex dx.

(e) Solve
∫

ex dx, and then give the most general antiderivative of
∫

xex dx.



Integration by Parts (TI2)

Here is how one might write out the explanation of how to find
∫

xex dx from start to
finish: ∫

xex dx

u = x dv = ex dx

du = 1 · dx v = ex∫
xex dx = xex −

∫
ex dx

= xex − ex + C

□



Integration by Parts (TI2)

Activity 5.2.7 Which step of the previous example do you think was the most important?

A. Choosing u = x and dv = ex dx.

B. Finding du = 1 dx and v = ex dx.

C. Applying integration by parts to rewrite
∫

xex dx as xex −
∫

ex dx.

D. Integrating
∫

ex dx to get xex − ex + C.



Integration by Parts (TI2)

Activity 5.2.8 Consider the integral
∫

x9 ln(x) dx. Suppose we proceed using integration
by parts. We choose u = ln(x) and dv = x9 dx.What is du?What is v?What do you get when
plugging these pieces into integration by parts?Does the new integral

∫
v du seem easier or

harder to compute than the original integral
∫

x9 ln(x) dx?

A. The original integral is easier to compute.

B. The new integral is easier to compute.

C. Neither integral seems harder than the other one.



Integration by Parts (TI2)

Activity 5.2.9 Consider the integral
∫

x9 ln(x) dx once more. Suppose we still proceed
using integration by parts. However, this time we choose u = x9 and dv = ln(x) dx. Do you
prefer this choice or the choice we made in Activity 5.2.8?

A. We prefer the substitution choice of u = ln(x) and dv = x9 dx.

B. We prefer the substitution choice of u = x9 and dv = ln(x) dx.

C. We do not have a strong preference, since these choices are of the same difficulty.



Integration by Parts (TI2)

Activity 5.2.10 Consider the integral
∫
x cos(x) dx. Suppose we proceed using integration

by parts. Which of the following candidates for u and dv would best allow you to evaluate
this integral?

A. u = cos(x), dv = x dx

B. u = cos(x) dx, dv = x

C. u = x dx, dv = cos(x)

D. u = x, dv = cos(x) dx



Integration by Parts (TI2)

Activity 5.2.11 Evaluate the integral
∫

x cos(x) dx using integration by parts.



Integration by Parts (TI2)

Activity 5.2.12 Now use integration by parts to evaluate the integral
∫ π

π/6

x cos(x) dx.



Integration by Parts (TI2)

Activity 5.2.13 Consider the integral
∫

x arctan(x) dx. Suppose we proceed using inte-
gration by parts. Which of the following candidates for u and dv would best allow you to
evaluate this integral?

A. u = x dx, dv = arctan(x)

B. u = arctan(x), dv = x dx

C. u = x arctan(x), dv = dx

D. u = x, dv = arctan(x) dx



Integration by Parts (TI2)

Activity 5.2.14 Consider the integral
∫

ex cos(x) dx. Suppose we proceed using integration
by parts. Which of the following candidates for u and dv would best allow you to evaluate
this integral?

A. u = ex, dv = cos(x) dx

B. u = cos(x), dv = ex dx

C. u = ex dx, dv = cos(x)

D. u = cos(x) dx, dv = ex



Integration by Parts (TI2)

Activity 5.2.15 Suppose we started using integration by parts to solve the integral∫
ex cos(x) dx as follows:

∫
ex cos(x) dx

u = cos(x) dv = ex dx

du = − sin(x) dx v = ex∫
ex cos(x) dx = cos(x)ex −

∫
ex(− sin(x) dx)

= cos(x)ex +
∫

ex sin(x) dx

We will have to use integration by parts a second time to evaluate the integral
∫

ex sin(x) dx.
Which of the following candidates for u and dv would best allow you to continue evaluating
the original integral

∫
ex cos(x) dx?

A. u = ex, dv = sin(x) dx

B. u = sin(x), dv = ex dx

C. u = ex dx, dv = sin(x)

D. u = sin(x) dx, dv = ex



Integration by Parts (TI2)

Activity 5.2.16 Use integration by parts to show that
∫ π/4

0

x sin(2x) dx =
1

4
.



Integration by Parts (TI2)

Activity 5.2.17 Consider the integral
∫

t5 sin(t3) dt.

(a) Use the substitution x = t3 to rewrite the integral in terms of x.

(b) Use integration by parts to evaluate the integral in terms of x.

(c) Replace x with t3 to finish evaluating the original integral.



Integration by Parts (TI2)

Activity 5.2.18 Use integration by parts to show that
∫

ln(z) dz = z ln(z)− z + C.



Integration by Parts (TI2)

Activity 5.2.19 Given that that
∫

ln(z) dz = z ln(z)− z + C, evaluate
∫
(ln(z))2 dz.



Integration by Parts (TI2)

Activity 5.2.20 Consider the antiderivative
∫
(sin(x))2 dx.

(a) Noting that
∫

(sin(x))2 dx =

∫
(sin(x))(sin(x))dx and letting u = sin(x), dv =

sin(x) dx, what equality does integration by parts yield?

A
∫

(sin(x))2dx = sin(x) cos(x) +
∫

(cos(x))2 dx.

B
∫

(sin(x))2dx = − sin(x) cos(x) +
∫

(cos(x))2 dx.

C
∫

(sin(x))2dx = sin(x) cos(x)−
∫
(cos(x))2 dx.

D
∫

(sin(x))2dx = − sin(x) cos(x)−
∫

(cos(x))2 dx.

(b) Use the fact that (cos(x))2 = 1− (sin(x))2 to rewrite the above equality.

(c) Solve algebraically for
∫

(sin(x))2 dx.



Integration by Parts (TI2)

Activity 5.2.21 Modifying the approach from Activity 5.2.20, use parts to find∫
(cos(x))2 dx.



Integration of Trigonometry (TI3)

5.3 Integration of Trigonometry (TI3)

Learning Outcomes
• Compute integrals involving products of trigonometric functions.



Integration of Trigonometry (TI3)

Activity 5.3.1 Consider
∫

sin(x) cos(x) dx. Which substitution would you choose to eval-
uate this integral?

A. u = sin(x)

B. u = cos(x)

C. u = sin(x) cos(x)

D. Substitution is not effective



Integration of Trigonometry (TI3)

Activity 5.3.2 Consider
∫

sin4(x) cos(x) dx. Which substitution would you choose to eval-
uate this integral?

A. u = sin(x)

B. u = sin4(x)

C. u = cos(x)

D. Substitution is not effective



Integration of Trigonometry (TI3)

Activity 5.3.3 Consider
∫

sin4(x) cos3(x) dx. Which substitution would you choose to
evaluate this integral?

A. u = sin(x)

B. u = cos3(x)

C. u = cos(x)

D. Substitution is not effective



Integration of Trigonometry (TI3)

Activity 5.3.4 It’s possible to use substitution to evaluate
∫

sin4(x) cos3(x) dx, by taking

advantage of the trigonometric identity sin2(x) + cos2(x) = 1.
Complete the following substitution of u = sin(x), du = cos(x) dx by filling in the missing

? s. ∫
sin4(x) cos3(x) dx =

∫
sin4(x)( ? ) cos(x) dx

=

∫
sin4(x)(1− ? ) cos(x) dx

=

∫
? (1− ? ) du

=

∫
(u4 − u6) du

=
1

5
u5 − 1

7
u7 + C

= ?



Integration of Trigonometry (TI3)

Activity 5.3.5 Trying to substitute u = cos(x), du = − sin(x) dx in the previous example
is less successful. ∫

sin4(x) cos3(x) dx = −
∫

sin3(x) cos3(x)(− sin(x) dx)

= −
∫

sin3(x)u3 du

= · · ·?

Which feature of sin4(x) cos3(x) made u = sin(x) the better choice?

A. The even power of sin4(x) B. The odd power of cos3(x)



Integration of Trigonometry (TI3)

Activity 5.3.6 Try to show∫
sin5(x) cos2(x) dx = −1

7
cos7 (x) + 2

5
cos5 (x)− 1

3
cos3 (x) + C

by first trying u = sin(x), and then trying u = cos(x) instead.
Which substitution worked better and why?

A. u = sin(x) due to sin5(x)’s odd power.

B. u = sin(x) due to cos2(x)’s even power.

C. u = cos(x) due to sin5(x)’s odd power.

D. u = cos(x) due to cos2(x)’s even power.



Integration of Trigonometry (TI3)

Observation 5.3.7 When integrating the form
∫

sinm(x) cosn(x) dx:

• If sin’s power is odd, rewrite the integral as
∫

g(cos(x)) sin(x) dx and use u = cos(x).

• If cos’s power is odd, rewrite the integral as
∫

h(sin(x)) cos(x) dx and use u = sin(x).



Integration of Trigonometry (TI3)

Activity 5.3.8 Let’s consider
∫

sin2(x) dx.

(a) Use the fact that sin2(θ) =
1− cos(2θ)

2
to rewrite the integrand using the above

identities as an integral involving cos(2x).

(b) Show that the integral evaluates to 1

2
x− 1

4
sin (2x) + C.



Integration of Trigonometry (TI3)

Activity 5.3.9 Let’s consider
∫

sin2(x) cos2(x) dx.

(a) Use the fact that cos2(θ) =
1 + cos(2θ)

2
and sin2(θ) =

1− cos(2θ)
2

to rewrite the
integrand using the above identities as an integral involving cos2(2x).

(b) Use the above identities to rewrite this new integrand as one involving cos(4x).

(c) Show that integral evaluates to 1

8
x− 1

32
sin (4x) + C.



Integration of Trigonometry (TI3)

Activity 5.3.10 Consider
∫

sin4(x) cos4(x) dx. Which would be the most useful way to
rewrite the integral?

A.
∫

(1− cos2(x))2 cos4(x) dx

B.
∫

sin4(x)(1− sin2(x))2 dx

C.
∫ (

1− cos(2x)
2

)2(
1 + cos(2x)

2

)2

dx



Integration of Trigonometry (TI3)

Activity 5.3.11 Consider
∫

sin3(x) cos5(x) dx. Which would be the most useful way to
rewrite the integral?

A.
∫

(1− cos2(x)) cos5(x) sin(x) dx

B.
∫

sin3(x)

(
1 + cos(2x)

2

)2

cos(x) dx

C.
∫

sin3(x)(1− sin2(x))2 cos(x) dx



Integration of Trigonometry (TI3)

Remark 5.3.12 We might also use some other trigonometric identities to manipulate our
integrands, listed in Appendix B.



Integration of Trigonometry (TI3)

Activity 5.3.13 Consider
∫

sin(θ) sin(3θ) dθ.

(a) Find an identity from Appendix B which could be used to transform our integrand.

(b) Rewrite the integrand using the selected identity.

(c) Evaluate the integral.



Trigonometric Substitution (TI4)

5.4 Trigonometric Substitution (TI4)

Learning Outcomes
• Use trigonometric substitution to compute indefinite integrals.



Trigonometric Substitution (TI4)

Activity 5.4.1 Consider
∫ √

9− 4x2 dx. Which substitution would you choose to evaluate
this integral?

A. u = 9− 4x2

B. u =
√
9− 4x2

C. u = 3− 2x

D. Substitution is not effective



Trigonometric Substitution (TI4)

Activity 5.4.2 To find
∫ √

9− 4x2 dx, we will need a more advanced substitution. Which
of these candidates is most reasonable?

A. Let v satisfy 9− 4x2 = 9− 9e2v = 9e−2v.

B. Let θ satisfy 9− 4x2 = 9− 9 sin2 θ = 9 cos2 θ.

C. Let w satisfy 9− 4x2 = 4− 8 ln |w| = 4 ln |2w|.

D. Let ϕ satisfy 9− 4x2 = 4− 4 cos2 ϕ = 4 sin2 ϕ.



Trigonometric Substitution (TI4)

Activity 5.4.3 Fill in the missing ? s for the following calculation.

Let 9− 4x2 = 9− 9 sin2 θ = 9 cos2 θ
4x2 = ?

x = ?

dx = ? dθ

∫ √
9− 4x2 dx =

∫ √
? ( ? dθ)

=

∫
9

2
cos2 θ dθ



Trigonometric Substitution (TI4)

Activity 5.4.4 From Section 5.3 we may find
∫

cos2 θ dθ =
1

2
θ +

1

2
sin θ cos θ + C.

Use this to continue your work in the previous activity and complete the integration by
trigonometric substitution.

sin(θ) = ?

θ = arcsin( ? )
cos(θ) = ?

√
?

∫ √
9− 4x2 dx = · · · =

∫
9

2
cos2 θ dθ

=
9

2

(
1

2
θ +

1

2
sin θ cos θ

)
+ C

=
9

4
( ? ) +

9

4
( ? )( ? ) + C



Trigonometric Substitution (TI4)

Activity 5.4.5 Use similar reasoning to complete the following proof that d

dx
[arcsin(x)] =

1√
1− x2

.

Let 1− x2 = 1− ? θ = ? θ

x2 = ?

x = ?

dx = ? dθ

θ = ?

∫
1√

1− x2
dx =

∫
1√
?
( ? dθ)

=

∫
dθ

= ? + C

= arcsin(x) + C



Trigonometric Substitution (TI4)

Activity 5.4.6 Substitutions of the form

16− 25x2 = 16− 16 sin2 x = 16 cos2 x

are made possible due to the Pythagorean identity sin2(x) + cos2(x) = 1.
Which two of these four identities can be obtained from dividing both sides of sin2(x) +

cos2(x) = 1 by cos2(x) and rearranging?

A. tan2(x)− 1 = sec2(x)

B. tan2(x) + 1 = sec2(x)

C. sec2(x)− 1 = tan2(x)

D. sec2(x) + 1 = tan2(x)



Trigonometric Substitution (TI4)

Observation 5.4.7 In summary, certain quadratic expressions inside an integral may be
substituted with trigonometric functions to take advantage of trigonometric identities and
simplify the integrand:

Let b2 − a2x2 = b2 − b2 sin2(θ) = b2 cos2(θ)

So x =
b

a
sin(θ)

Let b2 + a2x2 = b2 + b2 tan2(θ) = b2 sec2(θ)

So x =
b

a
tan(θ)

Let a2x2 − b2 = b2 sec2(θ)− b2 = b2 tan2(θ)

So x =
b

a
sec(θ)



Trigonometric Substitution (TI4)

Activity 5.4.8 Complete the following trigonometric substitution to find
∫

3

4 + 25x2
dx.

Let 4 + 25x2 = 2 + ? θ = ? θ

25x2 = ?

x = ?

dx = ? dθ

θ = ?

∫
3

4 + 25x2
dx =

∫
3

?
( ? dθ)

=

∫
? dθ

= ? + C

=
3

10
arctan

(
5

2
x

)
+ C



Trigonometric Substitution (TI4)

Activity 5.4.9 Complete the following trigonometric substitution to find
∫

7

x
√
9x2 − 16

dx.

Let 9x2 − 16 = ? θ − 16 = ? θ

9x2 = ?

x = ?

dx = ? dθ

θ = ?

∫
7

x
√
9x2 − 16

dx =

∫
7

?
√

?
( ? dθ)

=

∫
? dθ

= ? + C

=
7

4
arcsec

(
3

4
x

)
+ C



Trigonometric Substitution (TI4)

Activity 5.4.10 Use appropriate trigonometric substitutions and the given trigonometric
integrals to find each of the following.

(a) ∫ √
−9x2 + 16

x2
dx = · · ·

=

∫
3 cos2 θ
sin2 θ

dθ

= −3θ − 3
cos θ
sin θ

+ C

= −3 arcsin ( ? )−
√
?

?
+ C

(b) ∫
2
√
9x2 − 16

x
dx = · · ·

=

∫
8 tan2 θ dθ

= 8 tan θ − 8θ + C

= ?
√

? − 8 arcsec ( ? ) + C

(c) ∫
1√

81x2 + 4
dx = · · ·

=

∫
1

9
sec θ dθ

=
1

9
log | sec θ + tan θ|+ C

=
1

9
log
∣∣∣∣ ? +

1

2

√
?

∣∣∣∣+ C



Trigonometric Substitution (TI4)

Activity 5.4.11 Consider the unit circle x2+ y2 = 1. Find a function f(x) so that y = f(x)
is the graph of the upper-half semicircle of the unit circle.



Trigonometric Substitution (TI4)

Activity 5.4.12

(a) Find the area under the curve y = f(x) from Activity 5.4.11.

(b) How does this value compare to what we know about areas of circles?



Tables of Integrals (TI5)

5.5 Tables of Integrals (TI5)

Learning Outcomes
• I can integrate functions using a table of integrals.



Tables of Integrals (TI5)

Activity 5.5.1 Consider the integral
∫ √

16− 9x2 dx. Which of the following substitutions
appears most promising to find an antiderivative for this integral?

A. u = 16− 9x2

B. u = 9x2

C. u = 3x

D. u = x



Tables of Integrals (TI5)

Activity 5.5.2 The form of which entry from Appendix A best matches the form of the
integral

∫ √
16− 9x2 dx?

A. b. B. c. C. g. D. h.



Tables of Integrals (TI5)

Activity 5.5.3 For each of the following integrals, identify which entry from Appendix A
best matches the form of that integral.

(a)
∫

25x2

√
25x2 − 9

dx

(b)
∫

81x2

√
16− x2

dx

(c)
∫

1

10x
√
100− x2

dx

(d)
∫

7√
25x2 − 9

dx

(e)
∫

1√
25x2 + 16

dx



Tables of Integrals (TI5)

Here is how one might write out the explanation of how to find
∫

3

x
√
49x2 − 4

dx from
start to finish:∫

3

x
√
49x2 − 4

dx Let u2 = 49x2

Let a2 = 4

u = 7x

du = 7 dx

1

7
du = dx

a = 2∫
3

x
√
49x2 − 4

dx = 3

∫
1

x
√
49x2 − 4

( dx)

= 3

∫
1

u
7

√
u2 − a2

(
1

7
du

)
= 3

∫
1

u
√
u2 − a2

du which best matches f.

= 3

(
1

a
arcsec

(
u

a

))
+ C

=
3

2
arcsec

(
7x

2

)
+ C

□



Tables of Integrals (TI5)

Activity 5.5.5 Which step of the previous example do you think was the most important?

A. Choosing u2 = 49x2 and a2 = 4.

B. Finding u = 7x, du = 7 dx, 1

7
du = dx, and a = 2.

C. Substituting 3

x
√
49x2 − 4

dx with 3

∫
1

u
√
u2 − a2

du and finding the best match of f
from Appendix A.

D. Integrating 3

∫
1

u
√
u2 − a2

du = 3

(
1

a
arcsec

(u
a

))
+ C.

E. Unsubstituting 3

(
1

a
arcsec

(u
a

))
+ C to get 3

2
arcsec

(
7x

2

)
+ C.



Tables of Integrals (TI5)

Activity 5.5.6 Consider the integral
∫

1√
64− 9x2

dx. Suppose we proceed using Ap-

pendix A. We choose u2 = 9x2 and a2 = 64.

(a) What is u?

(b) What is du?

(c) What is a?

(d) What do you get when plugging these pieces into the integral
∫

1√
64− 9x2

dx?

(e) Is this a good substitution choice or a bad substitution choice?



Tables of Integrals (TI5)

Activity 5.5.7 Consider the integral
∫

1√
64− 9x2

dx once more. Suppose we still proceed

using Appendix A. However, this time we choose u2 = x2 and a2 = 64. Do you prefer this
choice of substitution or the choice we made in Activity 5.5.6?

A. We prefer the substitution choice of u2 = x2 and a2 = 64.

B. We prefer the substitution choice of u2 = 9x2 and a2 = 64.

C. We do not have a strong preference, since these substitution choices are of the same
difficulty.



Tables of Integrals (TI5)

Activity 5.5.8 Use the appropriate substitution and entry from Appendix A to show that∫
7

x
√
4 + 49x2

dx = −7

2
ln
∣∣∣∣∣2 +

√
49x2 + 4

7x

∣∣∣∣∣+ C.



Tables of Integrals (TI5)

Activity 5.5.9 Use the appropriate substitution and entry from Appendix A to show that∫
3

5x2
√
36− 49x2

dx = −
√
36− 49x2

60x
+ C.



Tables of Integrals (TI5)

Activity 5.5.10 Evaluate the integral
∫

8
√
4x2 − 81 dx. Be sure to specify which entry is

used from Appendix A at the corresponding step.



Partial Fractions (TI6)

5.6 Partial Fractions (TI6)

Learning Outcomes
• I can integrate functions using the method of partial fractions.



Partial Fractions (TI6)

Activity 5.6.1 Consider
∫

x2 + x+ 1

x3 + x
dx. Which substitution would you choose to evaluate

this integral?

A. u = x3

B. u = x3 + x

C. u = x2 + x+ 1

D. Substitution is not effective



Partial Fractions (TI6)

Activity 5.6.2 Using the method of substitution, which of these is equal to
∫

5

x+ 7
dx?

A. 5 ln |x+ 7|+ C

B. 5

7
ln |x+ 7|+ C

C. 5 ln |x|+ 5 ln |7|+ C

D. 5

7
ln |x|+ C



Partial Fractions (TI6)

Observation 5.6.3 To avoid repetitive substitution, the following integral formulas will be
useful. ∫

1

x+ b
dx = ln |x+ b|+ C∫

1

(x+ b)2
dx = − 1

x+ b
+ C∫

1

x2 + b2
dx =

1

b
arctan

(x
b

)
+ C



Partial Fractions (TI6)

Activity 5.6.4 Which of the following is equal to 1

x
+

1

x2 + 1
?

A. 2x

x2 + x+ 1

B. x3 + x

x2 + x+ 1

C. 2x

x3 + x

D. x2 + x+ 1

x3 + x



Partial Fractions (TI6)

Activity 5.6.5 Based on the previous activities, which of these is equal to
∫

x2 + x+ 1

x3 + x
dx?

A. ln |x|+ arctan(x) + C

B. ln |x2 + x+ 1|+ C

C. ln |x3 + x|+ C

D. arctan(x3 + x) + C



Partial Fractions (TI6)

Activity 5.6.6 Suppose we know

10x− 11

x2 + x− 2
=

7

x− 1
+

3

x+ 2
.

Which of these is equal to
∫

10x− 11

x2 + x− 2
dx?

A. 7 ln |x− 1|+ 3 arctan(x+ 2) + C

B. 7 ln |x− 1|+ 3 ln |x+ 2|+ C

C. 7 arctan(x− 1) + 3 arctan(x+ 2) + C

D. 7 arctan(x− 1) + 3 ln |x+ 2|+ C



Partial Fractions (TI6)

Observation 5.6.7 To find integrals like
∫

x2 + x+ 1

x3 + x
dx and

∫
10x− 11

x2 + x− 2
dx, we’d like to

decompose the fractions into simpler partial fractions that may be integrated with these
formulas ∫

1

x+ b
dx = ln |x+ b|+ C∫

1

(x+ b)2
dx = − 1

x+ b
+ C∫

1

x2 + b2
dx =

1

b
arctan

(x
b

)
+ C



Partial Fractions (TI6)

Fact 5.6.8 Partial Fraction Decomposition. Let p(x)

q(x)
be a rational function, where the

degree of p is less than the degree of q.

1. Linear Terms: Let (x − a)n divide q(x). Then the decomposition of p(x)
q(x)

will contain
the terms

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. Quadratic Terms: Let (x2+ bx+ c)n divide q(x), where x2+ bx+ c is irreducible. Then
the decomposition of p(x)

q(x)
will contain the terms

B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.



Partial Fractions (TI6)

Following is an example of a rather involved partial fraction decomposition.

7x6 − 4x5 + 41x4 − 20x3 + 24x2 + 11x+ 16

x(x− 1)2(x2 + 4)2

=
A

x
+

B

x− 1
+

C

(x− 1)2
+

Dx+ E

x2 + 4
+

Fx+G

(x2 + 4)2

Using some algebra, it’s possible to find values for A through G to determine

7x6 − 4x5 + 41x4 − 20x3 + 24x2 + 11x+ 16

x(x− 1)2(x2 + 4)2

=
1

x
+

2

x− 1
+

3

(x− 1)2
+

4x+ 5

x2 + 4
+

6x+ 7

(x2 + 4)2
.

□



Partial Fractions (TI6)

Activity 5.6.10 Which of the following is the form of the partial fraction decomposition of
x3 − 7x2 − 7x+ 15

x3(x+ 5)
?

A. A

x
+

B

x+ 5

B. A

x3
+

B

x+ 5

C. A

x
+

B

x2
+

C

x3
+

D

x+ 5

D. A

x
+

B

x2
+

C

x3
+

Dx+ E

x+ 5



Partial Fractions (TI6)

Activity 5.6.11 Which of the following is the form of the partial fraction decomposition of
x2 + 1

(x− 3)2(x2 + 4)2
?

A. A

x− 3
+

B

(x− 3)2
+

C

x2 + 4
+

D

(x2 + 4)2

B. A

x− 3
+

B

(x− 3)2
+

Cx+D

(x2 + 4)2

C. A

x− 3
+

B

(x− 3)2
+

C

x2 + 4
+

Dx+ E

(x2 + 4)2

D. A

x− 3
+

B

(x− 3)2
+

Cx+D

x2 + 4
+

Ex+ F

(x2 + 4)2



Partial Fractions (TI6)

Activity 5.6.12 Consider that the partial decomposition of x2 + 5x+ 3

(x+ 1)2x
is

x2 + 5x+ 3

(x+ 1)2x
=

A

x+ 1
+

B

(x+ 1)2
+

C

x
.

What equality do we obtain if we multiply both sides of the above equation by (x+ 1)2x?

A. x2 + 5x+ 3 = Ax(x+ 1) +Bx+ C(x+ 1)2

B. x2 + 5x+ 3 = A(x+ 1) +B(x+ 1)2 + Cx

C. x2 + 5x+ 3 = Ax(x+ 1) +Bx+ C(x+ 1)

D. x2 + 5x+ 3 = Ax(x+ 1) +Bx2 + C(x+ 1)2



Partial Fractions (TI6)

Activity 5.6.13 Use your choice in Activity 5.6.12 (which must hold for any x value) to
answer the following.

(a) By substituting x = 0 into the equation, we may find:

A. A = 1 B. B = −2 C. C = 3

(b) By substituting x = −1 into the equation, we may find:

A. A = −4 B. B = 1 C. C = 5



Partial Fractions (TI6)

Activity 5.6.14 Using the results of Activity 5.6.13, show how to rewrite our choice from
Activity 5.6.12

?x2 + ?x = Ax2 + Ax.
What value of A satisfies this equation?

A. −2 B. 3 C. 4 D. −5



Partial Fractions (TI6)

Activity 5.6.15 By using the form of the decomposition x2 + 5x+ 3

(x+ 1)2x
=

A

x+ 1
+

B

(x+ 1)2
+
C

x

and the coefficients found in Activity 5.6.13 and Activity 5.6.14, evaluate
∫

x2 + 5x+ 3

(x+ 1)2x
dx.



Partial Fractions (TI6)

Activity 5.6.16 Given that x3 − 7x2 − 7x+ 15

x3(x+ 5)
=

A

x
+

B

x2
+

C

x3
+

D

x+ 5
do the following

to find A,B,C, and D.

(a) Eliminate the fractions to obtain

x3 − 7x2 − 7x+ 15 = A( ? )( ? ) +B( ? )( ? ) + C( ? ) +D( ? ).

(b) Plug in an x value that lets you find the value of C.

(c) Plug in an x value that lets you find the value of D.

(d) Use other algebra techniques to find the values of A and B.



Partial Fractions (TI6)

Activity 5.6.17 Given your choice in Activity 5.6.16 Find
∫

x3 − 7x2 − 7x+ 15

x3(x+ 5)
dx.



Partial Fractions (TI6)

Activity 5.6.18 Consider the rational expression 2x3 + 2x+ 4

x4 + 2x3 + 4x2
. Which of the following is

the partial fraction decomposition of this rational expression?

A. 1

x
+

1

x2
+

2x− 1

x2 + 2x+ 4

B. 2

x
+

0

x2
+

−1

x2 + 2x+ 4

C. 0

x
+

1

x2
+

−1

x2 + 2x+ 4

D. 0

x
+

1

x2
+

2x− 1

x2 + 2x+ 4



Partial Fractions (TI6)

Activity 5.6.19 Given your choice in Activity 5.6.18 Find
∫

2x3 + 2x+ 4

x4 + 2x3 + 4x2
dx.



Partial Fractions (TI6)

Activity 5.6.20 Given that 2x+ 5

x2 + 3x+ 2
=

−1

x+ 2
+

3

x+ 1
, find

∫ 3

0

2x+ 5

x2 + 3x+ 2
dx.



Partial Fractions (TI6)

Activity 5.6.21 Evaluate
∫

4x2 − 3x+ 1

(2x+ 1)(x+ 2)(x− 3)
dx.



Integration Strategy (TI7)

5.7 Integration Strategy (TI7)

Learning Outcomes
• I can select appropriate strategies for integration.



Integration Strategy (TI7)

Activity 5.7.1 Consider the integral
∫

et tan(et) sec2(et) dt. Which strategy is a reasonable
first step to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Integration Strategy (TI7)

Activity 5.7.2 Consider the integral
∫

2x+ 3

1 + x2
dx. Which strategy is a reasonable first step

to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Integration Strategy (TI7)

Activity 5.7.3 Consider the integral
∫

x
3
√
1− x2

dx. Which strategy is a reasonable first
step to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Integration Strategy (TI7)

Activity 5.7.4 Consider the integral
∫

1

2x
√
1− 36x2

dx. Which strategy is a reasonable
first step to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Integration Strategy (TI7)

Activity 5.7.5 Consider the integral
∫

t5 cos(t3) dt. Which strategy is a reasonable first
step to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Integration Strategy (TI7)

Activity 5.7.6 Consider the integral
∫

1

1 + ex
dx. Which strategy is a reasonable first step

to make progress towards evaluating this integral?

A. The method of substitution

B. The method of integration by parts

C. Trigonometric substitution

D. Using a table of integrals

E. The method of partial fractions



Improper Integrals (TI8)

5.8 Improper Integrals (TI8)

Learning Outcomes
• I can compute improper integrals.



Improper Integrals (TI8)

Activity 5.8.1 Recall
∫

1

x2
dx = −1

x
+ C. Compute the following definite integrals.

(a)
∫ 1

1/100

1

x2
dx =

[
−1

x

]1
1/100

(b)
∫ 1

1/10000

1

x2
dx

(c)
∫ 1

1/1000000

1

x2
dx



Improper Integrals (TI8)

Activity 5.8.2 What do you notice about
∫ 1

a

1

x2
dx as a approached 0 in Activity 5.8.1?

A.
∫ 1

a

1

x2
dx approaches 0.

B.
∫ 1

a

1

x2
dx approaches a finite constant

greater than 0.

C.
∫ 1

a

1

x2
dx approaches ∞.

D. There is not enough information.



Improper Integrals (TI8)

Activity 5.8.3 Compute the following definite integrals, again using
∫

1

x2
dx = −1

x
+ C.

(a)
∫ 100

1

1

x2
dx =

[
−1

x

]100
1

(b)
∫ 10000

1

1

x2
dx

(c)
∫ 1000000

1

1

x2
dx



Improper Integrals (TI8)

Activity 5.8.4 What do you notice about
∫ b

1

1

x2
dx as b approached ∞ in Activity 5.8.3?

A.
∫ b

1

1

x2
dx approaches 0.

B.
∫ b

1

1

x2
dx approaches a finite constant

greater than 0.

C.
∫ b

1

1

x2
dx approaches ∞.

D. There is not enough information.



Improper Integrals (TI8)

Activity 5.8.5 Recall
∫

1√
x
dx = 2

√
x+ C. Compute the following definite integrals.

(a)
∫ 1

1/100

1√
x
dx =

[
2
√
x
]1
1/100

(b)
∫ 1

1/10000

1√
x
dx

(c)
∫ 1

1/1000000

1√
x
dx



Improper Integrals (TI8)

Activity 5.8.6

(a) What do you notice about the integral
∫ 1

a

1√
x
dx as a approached 0 in Activity 5.8.5?

A.
∫ 1

a

1√
x
dx approaches 0.

B.
∫ 1

a

1√
x
dx approaches a finite con-

stant greater than 0.

C.
∫ 1

a

1√
x
dx approaches ∞.

D. There is not enough information.

(b) How does this compare to what you found in Activity 5.8.1?



Improper Integrals (TI8)

Activity 5.8.7 Compute the following definite integrals using
∫

1√
x
dx = 2

√
x+ C.

(a)
∫ 100

1

1√
x
dx =

[
2
√
x
]100
1

(b)
∫ 10000

1

1√
x
dx

(c)
∫ 1000000

1

1√
x
dx



Improper Integrals (TI8)

Activity 5.8.8

(a) What do you notice about the integral
∫ b

1

1√
x
dx as b approached ∞ in Activity 5.8.7?

A.
∫ b

1

1√
x
dx approaches 0.

B.
∫ b

1

1√
x
dx approaches a finite con-

stant greater than 0.

C.
∫ b

1

1√
x
dx approaches ∞.

D. There is not enough information.

(b) How does this compare to what you found in Activity 5.8.3?



Improper Integrals (TI8)

Definition 5.8.9 For a function f(x) and a constant a, we let
∫ ∞

a

f(x) dx denote

∫ ∞

a

f(x) dx = lim
b→∞

(∫ b

a

f(x) dx

)
.

If this limit is a defined real number, then we say
∫ ∞

a

f(x) dx is convergent. Otherwise, it
is divergent.

Similarly, ∫ b

−∞
f(x) dx = lim

a→−∞

(∫ b

a

f(x) dx

)
.

♢



Improper Integrals (TI8)

Activity 5.8.10 Which of these limits is equal to
∫ ∞

1

1

x2
dx?

A. lim
b→∞

∫ b

1

1

x2
dx

B. lim
b→∞

[
−1

x

]b
1

C. lim
b→∞

[
−1

b
+ 1

]

D. All of these.



Improper Integrals (TI8)

Activity 5.8.11 Given the result of Activity 5.8.10, what is
∫ ∞

1

1

x2
dx?

A. 0

B. 1

C. ∞

D. −∞



Improper Integrals (TI8)

Activity 5.8.12 Does
∫ ∞

1

1√
x
dx converge or diverge?

A. Converges because lim
b→0+

[
2
√
b− 2

]
converges.

B. Diverges because lim
b→0+

[
2
√
b− 2

]
diverges.

C. Converges because lim
b→∞

[
2
√
b− 2

]
converges.

D. Diverges because lim
b→∞

[
2
√
b− 2

]
diverges.



Improper Integrals (TI8)

Definition 5.8.13 For a function f(x) with a vertical asymptote at x = c > a, we let∫ c

a

f(x) dx denote ∫ c

a

f(x) dx = lim
b→c−

(∫ b

a

f(x) dx

)
.

For a function f(x) with a vertical asymptote at x = c < b, we let
∫ b

c

f(x) dx denote

∫ b

c

f(x) dx = lim
a→c+

(∫ b

a

f(x) dx

)
.

♢



Improper Integrals (TI8)

Activity 5.8.14 Which of these limits is equal to
∫ 1

0

1√
x
dx?

A. lim
a→0+

∫ 1

a

1√
x
dx

B. lim
a→0+

[
2
√
x
]1
a

C. lim
a→0+

[
2− 2

√
a
]

D. All of these.



Improper Integrals (TI8)

Activity 5.8.15 Given the this result, what is
∫ 1

0

1√
x
dx?

A. 0

B. 1

C. 2

D. ∞



Improper Integrals (TI8)

Activity 5.8.16 Does
∫ 1

0

1

x2
dx converge or diverge?

A. Converges because lim
a→0+

[
−1 +

1

a

]
converges.

B. Diverges because lim
a→0+

[
−1 +

1

a

]
diverges.

C. Converges because lim
a→1−

[
−1 +

1

a

]
converges.

D. Diverges because lim
a→1−

[
−1 +

1

a

]
diverges.



Improper Integrals (TI8)

Activity 5.8.17 Explain and demonstrate how to write each of the following improper
integrals as a limit, and why this limit converges or diverges.

(a)
∫ +∞

−2

1√
x+ 6

dx.

(b)
∫ −2

−4

1

(x+ 4)
4
3

dx.

(c)
∫ 0

−5

1

(x+ 5)
5
9

dx.

(d)
∫ +∞

10

1

(x− 8)
4
3

dx.



Improper Integrals (TI8)

Fact 5.8.18 Suppose that 0 < p and p ̸= 1. Applying the integration power rule gives us the
indefinite integral

∫
1

xp
dx =

1

(1− p)
x1−p + C.



Improper Integrals (TI8)

Activity 5.8.19

(a) If 0 < p < 1, which of the following statements must be true? Select all that apply.

A. 1− p < 0

B. 1− p > 0

C. 1− p < 1

D.
∫ ∞

1

1

xp
dx converges.

E.
∫ ∞

1

1

xp
dx diverges.

(b) If p > 1, which of the following statements must be true? Select all that apply.

A. 1− p < 0

B. 1− p > 0

C. 1− p < 1

D.
∫ ∞

1

1

xp
dx converges.

E.
∫ ∞

1

1

xp
dx diverges.



Improper Integrals (TI8)

Activity 5.8.20

(a) If 0 < p < 1, which of the following statements must be true?

A.
∫ 1

0

1

xp
dx converges. B.

∫ 1

0

1

xp
dx diverges.

(b) If p > 1, which of the following statements must be true?

A.
∫ 1

0

1

xp
dx converges. B.

∫ 1

0

1

xp
dx diverges.



Improper Integrals (TI8)

Activity 5.8.21 Consider when p = 1. Then 1

xp
=

1

x
and

∫
1

xp
dx =

∫
1

x
dx = ln |x|+ C.

(a) What can we conclude about
∫ ∞

1

1

x
dx?

A.
∫ ∞

1

1

x
dx converges.

B.
∫ ∞

1

1

x
dx diverges.

C. There is not enough information to
determine whether this integral con-
verges or diverges.

(b) What can we conclude about
∫ 1

0

1

x
dx?

A.
∫ 1

0

1

x
dx converges.

B.
∫ 1

0

1

x
dx diverges.

C. There is not enough information to
determine whether this integral con-
verges or diverges.



Improper Integrals (TI8)

Fact 5.8.22 Let c, p > 0.

•
∫ c

0

1

xp
dx converges if and only if p < 1.

•
∫ ∞

c

1

xp
dx converges if and only if p > 1.



Improper Integrals (TI8)

Activity 5.8.23 Consider the plots of f(x), g(x), h(x) where 0 < g(x) < f(x) < h(x).

x

y

f(x)
g(x)

h(x)

Figure 74 Plots of f(x), g(x), h(x)

If
∫ ∞

1

f(x) dx is convergent, what can we say about g(x), h(x)?

A.
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are both convergent.

B.
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are both divergent.

C. Whether or not
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are convergent or divergent cannot be
determined.

D.
∫ ∞

1

g(x) dx is convergent and
∫ ∞

1

h(x) dx is divergent.

E.
∫ ∞

1

g(x) dx is convergent and
∫ ∞

1

h(x) dx could be either convergent or divergent.



Improper Integrals (TI8)

Activity 5.8.24 Consider the plots of f(x), g(x), h(x) where 0 < g(x) < f(x) < h(x).

x

y

f(x)
g(x)

h(x)

Figure 75 Plots of f(x), g(x), h(x)

If
∫ ∞

1

f(x) dx is divergent, what can we say about g(x), h(x)?

A.
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are both convergent.

B.
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are both divergent.

C. Whether or not
∫ ∞

1

g(x) dx and
∫ ∞

1

h(x) dx are convergent or divergent cannot be
determined.

D.
∫ ∞

1

g(x) dx could be either convergent or divergent and
∫ ∞

1

h(x) dx is divergent.

E.
∫ ∞

1

g(x) dx is convergent and
∫ ∞

1

h(x) dx is divergent.



Improper Integrals (TI8)

Activity 5.8.25 Consider the plots of f(x), g(x), h(x) where 0 < g(x) < f(x) < h(x).

x

y

f(x)

h(x)

g(x)

Figure 76 Plots of f(x), g(x), h(x)

If
∫ 1

0

f(x) dx is convergent, what can we say about g(x) and h(x)?

A.
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are both convergent.

B.
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are both divergent.

C. Whether or not
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are convergent or divergent cannot be
determined.

D.
∫ 1

0

g(x) dx is convergent and
∫ 1

0

h(x) dx is divergent.

E.
∫ 1

0

g(x) dx is convergent and
∫ 1

0

h(x) dx can either be convergent or divergent.



Improper Integrals (TI8)

Activity 5.8.26 Consider the plots of f(x), g(x), h(x) where 0 < g(x) < f(x) < h(x).

x

y

f(x)

h(x)

g(x)

Figure 77 Plots of f(x), g(x), h(x)

If
∫ 1

0

f(x) dx is divergent, what can we say about g(x) and h(x)?

A.
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are both convergent.

B.
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are both divergent.

C. Whether or not
∫ 1

0

g(x) dx and
∫ 1

0

h(x) dx are convergent or divergent cannot be
determined.

D.
∫ 1

0

g(x) dx can be either convergent or divergent and
∫ 1

0

h(x) dx is divergent.

E.
∫ 1

0

g(x) dx is convergent and
∫ 1

0

h(x) dx is divergent.



Improper Integrals (TI8)

Fact 5.8.27 Let f(x), g(x) be functions such that for a < x < b, 0 ≤ f(x) ≤ g(x). Then

0 ≤
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

In particular:

• If
∫ b

a

g(x) dx converges, so does the smaller
∫ b

a

f(x) dx.

• If
∫ b

a

f(x) dx diverges, so does the bigger
∫ b

a

g(x) dx.



Improper Integrals (TI8)

Activity 5.8.28 Compare 1

x3 + 1
to one of the following functions where x > 2 and use this

to determine if
∫ ∞

2

1

x3 + 1
dx is convergent or divergent.

A. 1

x

B. 1√
x

C. 1

x2

D. 1

x3



Improper Integrals (TI8)

Activity 5.8.29 Comparing 1

x3 − 4
to which of the following functions where x > 3 allows

you to determine that
∫ ∞

3

1

x3 − 4
dx converges?

A. 1

x3 + x

B. 1

4x3

C. 1

x3

D. 1

x3 − x3/2



Improper Integrals (TI8)

Activity 5.8.30

(a) Find
∫ a

π/2

cos(x) dx.

(b) Which of the following is true about
∫∞
π/2

cos(x) dx?

A.
∫ ∞

π/2

cos(x) dx is convergent. B.
∫ ∞

π/2

cos(x) dx is divergent.

C. More information is needed.



Chapter 6

Applications of Integration (AI)

Learning Outcomes
How can we use integrals to solve application questions?
By the end of this chapter, you should be able to...

1. Compute the average value of a function on an interval.

2. Estimate the arclength of a curve with Riemann sums and find an integral which
computes the arclength.

3. Compute volumes of solids of revolution.

4. Compute surface areas of surfaces of revolution.

5. Set up integrals to solve problems involving density, mass, and center of mass.

6. Set up integrals to solve problems involving work.

7. Set up integrals to solve problems involving force and/or pressure.

551



Average Value (AI1)

6.1 Average Value (AI1)

Learning Outcomes
• Compute the average value of a function on an interval.



Average Value (AI1)

Activity 6.1.1 Suppose a car drives due east at 70 miles per hour for 2 hours, and then
slows down to 40 miles per hour for an additional hour.

(a) How far did the car travel in these 3 hours?

A. 110 miles
B. 150 miles

C. 180 miles
D. 220 miles

(b) What was its average velocity over these 3 hours?

A. 55 miles per hour
B. 60 miles per hour

C. 70 miles per hour
D. 75 miles per hour
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Activity 6.1.2 Suppose instead the car starts with a velocity of 30 miles per hour, and
increases velocity linearly according to the function v(t) = 30+20t so its velocity after three
hours is 90 miles per hour.

(a) How can we model the car’s distance traveled using calculus?

A. Integrate velocity, because position is the rate of change of velocity.
B. Integrate velocity, because velocity is the rate of change of position.
C. Differentiate velocity, because position is the rate of change of velocity.
D. Differentiate velocity, because velocity is the rate of change of position.

(b) Then, which of these expressions is a mathematical model for the car’s distance traveled
after 3 hours?

A.
∫

(30 + 20t) dt

B.
∫

(30t+ 10t2) dt

C.
∫ 3

0

(30 + 20t) dt

D.
∫ 3

0

(30t+ 10t2) dt

(c) How far did the car travel in these 3 hours?

A. 110 miles
B. 150 miles

C. 180 miles
D. 220 miles

(d) Thus, what was its average velocity over three hours?

A. 55 miles per hour
B. 60 miles per hour

C. 70 miles per hour
D. 75 miles per hour
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Observation 6.1.3 To obtain the average velocity of an object traveling with velocity v(t)

for a ≤ t ≤ b, we may find its distance traveled by calculating
∫ b

a
v(t). Thus, the average

velocity is obtained by dividing by the time b− a elapsed:

1

b− a

∫ b

a

v(t) dt.

For example, the following calculuation confirms the previous activity:

1

3− 0

∫ 3

0

(30 + 20t) dt.
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Definition 6.1.4 Given a function f(x) defined on [a, b], it’s average value is defined to be

1

b− a

∫ b

a

f(x) dx.

♢
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Activity 6.1.5

(a) Which of the following expressions represent the average value of f(x) = −12x2+8 x+4
over the interval [−1, 2]?

A. 1

3

∫ 2

−1

(
−12x2 + 8x+ 4

)
dx

B. −1

1

∫ 2

1

(
−12x2 + 8x+ 4

)
dx

C. 1

2

∫ 2

1

(
−12x2 + 8x+ 4

)
dx

D. −1

4

∫ 2

−1

(
−12x2 + 8x+ 4

)
dx

(b) Show that the average value of f(x) = −12x2 + 8x+ 4 over the interval [−1, 2] is −4.
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Activity 6.1.6

(a) Which of the following expressions represent the average value of f(x) = x cos(x2) + x
on the interval [π, 4π]?

A. 1

3π

∫ 4π

0

(
x cos(x2) + x

)
dx

B. 1

4π

∫ 4π

0

(
x cos(x2) + x

)
dx

C. 1

3π

∫ 4π

π

(
x cos(x2) + x

)
dx

D. 1

4π

∫ 4π

π

(
x cos(x2) + x

)
dx

(b) Find the average value of f(x) = x cos(x2) + x on the interval [π, 4π] using the chosen
expression.
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Activity 6.1.7 Find the average value of g(t) = t

t2 + 1
on the interval [0, 4].
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Activity 6.1.8 A shot of a drug is administered to a patient and the quantity of the drug in
the bloodstream over time is q(t) = 3te−0.25t, where t is measured in hours and q is measured
in milligrams. What is the average quantity of this drug in the patient’s bloodstream over
the first 6 hours after injection?
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Activity 6.1.9 Which of the following is the average value of f(x) over the interval [0, 8]?

x

y

1 2 3 4 5 6 7 8

1

2

3

4

y = f(x)

Figure 78 Plot of f(x).

Note f(x) =


1, 0 ≤ x ≤ 3

4, 3 < x ≤ 6

2, 6 < x ≤ 8

.

A. 4

B. 2

C. 7

3
D. 19

E. 2.375
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6.2 Arclength (AI2)

Learning Outcomes
• Estimate the arclength of a curve with Riemann sums and find an integral which

computes the arclength.
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Activity 6.2.1 Suppose we wanted to find the arclength of the parabola y = −x2 +6x over
the interval [0, 4].

x

y

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Figure 79 Plot of y = −x2 + 6x over [0, 4].

(a) Suppose we wished to estimate this length with two line segments where ∆x = 2.
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x

y

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Figure 80 Plot of y = −x2 + 6x over [0, 4] with two line segments where ∆x = 2.
Which of the following expressions represents the sum of the lengths of the line segments
with endpoints (0, 0), (2, 8) and (4, 8)?

A.
√
4 + 8

B.
√
22 + 82 +

√
(4− 2)2 + (8− 8)2

C.
√
42 + 82

D.
√
22 + 82 +

√
42 + 82

(b) Suppose we wished to estimate this length with four line segments where ∆x = 1.
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x

y

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Figure 81 Plot of y = −x2 + 6x over [0, 4] with four line segments where ∆x = 1.
Which of the following expressions represents the sum of the lengths of the line segments
with endpoints (0, 0), (1, 5), (2, 8), (3, 9) and (4, 8)?

A
√
42 + 82

B
√

12 + (5− 0)2 +
√

12 + (8− 5)2 +
√

12 + (9− 8)2 +
√

12 + (8− 9)2

C
√
12 + 52 +

√
22 + 82 +

√
32 + 92 +

√
42 + 82

(c) Suppose we wished to estimate this length with n line segments where ∆x =
4

n
. Let

f(x) = −x2 + 6x.
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x

y

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

(x0, f(x0))

(x0 +∆x, f(x0 +∆x))

∆x

Figure 82 Plot of y = −x2 + 6x over [0, 4] with n line segments where ∆x =
4

n
.

Which of the following expressions represents the length of the line segment from
(x0, f(x0)) to (x0 +∆x, f(x0 +∆x))?

A.
√

x2
0 + f(x0)2

B.
√

(x0 +∆x)2 + f(x0 +∆x)2

C.
√
(∆x)2 + f(∆x)2

D.
√
(∆x)2 + (f(x0 +∆x)− f(x0))2

(d) Which of the following Riemann sums best estimates the arclength of the parabola
y = −x2 + 6x over the interval [0, 4]? Let f(x) = −x2 + 6x.

A.
∑√

(∆x)2 + f(∆x)2

B.
∑√

(xi +∆x)2 + f(xi +∆x)2

C.
∑√

x2
i + f(xi)2

D.
∑√

(∆x)2 + (f(xi +∆x)− f(xi))2

(e) Note that

√
(∆x)2 + (f(xi +∆x)− f(xi))2 =

√√√√(∆x)2

(
1 +

(
f(xi +∆x)− f(xi)

∆x

)2
)
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=

√
1 +

(
f(xi +∆x)− f(xi)

∆x

)2

∆x.

Which of the following best describes lim
∆x→0

f(xi +∆x)− f(xi)

∆x
?

A. 0 B. 1 C. f ′(xi) D. This limit is
undefined.
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Fact 6.2.2 Given a differentiable function f(x), the arclength of y = f(x) defined on [a, b]
is computed by the integral

lim
n→∞

∑√
(∆x)2 + (f(xi +∆)− f(xi))2 = lim

n→∞

∑√
1 +

(
f(xi +∆x)− f(xi)

∆x

)2

∆x

=

∫ b

a

√
1 + (f ′(x))2dx.
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Activity 6.2.3 Use Fact 6.2.2 to find an integral which measures the arclength of the
parabola y = −x2 + 6x over the interval [0, 4].
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Activity 6.2.4 Consider the curve y = 2x − 1 defined on [1, 5].

(a) Estimate the arclength of this curve with two line segments where ∆x = 2.

xi (xi, f(xi)) (xi +∆x, f(xi +∆x)) Length of segment
1

3

(b) Estimate the arclength of this curve with four line segments where ∆x = 1.

xi (xi, f(xi)) (xi +∆x, f(xi +∆x)) Length of segment
1

2

3

4

(c) Find an integral which computes the arclength of the curve y = 2x−1 defined on [1, 5].
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Activity 6.2.5 Consider the curve y = 5e−x2 over the interval [−1, 4].

(a) Estimate this arclength with 5 line segments where ∆x = 1.

(b) Find an integral which computes this arclength.
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6.3 Volumes of Revolution (AI3)

Learning Outcomes
• Compute volumes of solids of revolution.
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Activity 6.3.1 Consider the following visualization to decide which of these statements is
most appropriate for describing the relationship of lengths and areas.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Area =

∫ b

a

f(x)dx

Length = f(x)

A. Length is the integral of areas.

B. Area is the integral of lengths.

C. Length is the derivative of areas.

D. None of these.
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Definition 6.3.2 We define the volume of a solid with cross sectional area given by A(x)
laying between a ≤ x ≤ b to be the definite integral

Volume =

∫ b

a

A(x) dx.

♢
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Activity 6.3.3 We will be focused on the volumes of solids obtained by revolving a region
around an axis. Let’s use the running example of the region bounded by the curves x =
0, y = 4, y = x2.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Consider the below illustrated revolution of this region, and the cross-section drawn
from a horizontal line segment. Choose the most appropriate description of this illus-
tration.
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A. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s x-value.

B. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s y-value.

C. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s x-value.

D. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s y-value.

(b) Which of these formulas is most appropriate to find this illustration’s cross-sectional
area?

A. πr2
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B. 2πrh

C. πR2 − πr2

D. 1

2
bh

(c) Consider the below illustrated revolution of this region, and the cross-section drawn
from a vertical line segment. Choose the most appropriate description of this illustra-
tion.

A. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s x-value.

B. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s y-value.
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C. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s x-value.

D. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s y-value.

(d) Which of these formulas is most appropriate to find this illustration’s cross-sectional
area?

A. πr2

B. 2πrh

C. πR2 − πr2

D. 1

2
bh

(e) Consider the below illustrated revolution of this region, and the cross-section drawn
from a horizontal line segment. Choose the most appropriate description of this illus-
tration.
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A. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s x-value.

B. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s y-value.

C. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s x-value.

D. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s y-value.

(f) Which of these formulas is most appropriate to find this illustration’s cross-sectional
area?

A. πr2
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B. 2πrh

C. πR2 − πr2

D. 1

2
bh

(g) Consider the below illustrated revolution of this region, and the cross-section drawn
from a vertical line segment. Choose the most appropriate description of this illustra-
tion.

A. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s x-value.

B. Region is rotated around the x-axis; the cross-sectional area is determined by the
line segment’s y-value.
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C. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s x-value.

D. Region is rotated around the y-axis; the cross-sectional area is determined by the
line segment’s y-value.

(h) Which of these formulas is most appropriate to find this illustration’s cross-sectional
area?

A. πr2

B. 2πrh

C. πR2 − πr2

D. 1

2
bh
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Remark 6.3.4 Generally when solving problems without the aid of technology, it’s useful
to draw your region in two dimensions, choose whether to use a horizontal or vertical line
segment, and draw its rotation to determine the cross-sectional shape.

When the shape is a disk, this is called the disk method and we use one of these formulas
depending on whether the cross-sectional area depends on x or y.

V =

∫ b

a

πr(x)2 dx, V =

∫ b

a

πr(y)2 dy.

When the shape is a washer, this is called the washer method and we use one of these
formulas depending on whether the cross-sectional area depends on x or y.

V =

∫ b

a

(
πR(x)2 − πr(x)2

)
dx, V =

∫ b

a

(
πR(y)2 − πr(y)2

)
dy.

When the shape is a cylindrical shell, this is called the shell method and we use one of
these formulas depending on whether the cross-sectional area depends on x or y.

V =

∫ b

a

2πr(x)h(x) dx, V =

∫ b

a

2πr(y)h(y) dy.
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Activity 6.3.5 Let’s now consider the region bounded by the curves x = 0, x = 1, y = 0, y =
5ex, rotated about the x-axis.

(a) Sketch two copies of this region in the xy plane.

(b) Draw a vertical line segment in one region and its rotation around the x-axis. Draw a
horizontal line segment in the other region and its rotation around the x-axis.

(c) Consider the method required for each cross-section drawn. Which would be the easiest
strategy to proceed with?

A. The horizontal line segment, using the disk/washer method.
B. The horizontal line segment, using the shell method.
C. The vertical line segment, using the disk/washer method.
D. The vertical line segment, using the shell method.

(d) Let’s proceed with the vertical segment. Which formula is most appropriate for the
radius?

A. r(x) = x

B. r(x) = 5ex

C. r(x) = 5 ln(x)

D. r(x) =
1

5
ln(x)

(e) Which of these integrals is equal to the volume of the solid of revolution?

A.
∫ 1

0

25πe2x dx

B.
∫ 1

0

5π2ex dx

C.
∫ 2

0

25πex dx

D.
∫ 2

0

5π2e2x dx
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Activity 6.3.6 Let’s now consider the same region, bounded by the curves x = 0, x = 1, y =
0, y = 5ex, but this time rotated about the y-axis.

(a) Sketch two copies of this region in the xy plane.

(b) Draw a vertical line segment in one region and its rotation around the y-axis. Draw a
horizontal line segment in the other region and its rotation around the y-axis.

(c) Consider the method required for each cross-section drawn. Which would be the easiest
strategy to proceed with?

A. The horizontal line segment, using the disk/washer method.
B. The horizontal line segment, using the shell method.
C. The vertical line segment, using the disk/washer method.
D. The vertical line segment, using the shell method.

(d) Let’s proceed with the vertical segment. Which formula is most appropriate for the
radius?

A. r(x) = x

B. r(x) = 5ex

C. r(x) = 5 ln(x)

D. r(x) =
1

5
ln(x)

(e) Which formula is most appropriate for the height?

A. h(x) = x

B. h(x) = 5ex

C. h(x) = 5 ln(x)

D. h(x) =
1

5
ln(x)

(f) Which of these integrals is equal to the volume of the solid of revolution?

A.
∫ 1

0

5π2xex dx

B.
∫ 1

0

10πxex dx

C.
∫ 2

0

5πxex dx

D.
∫ 2

0

10πx2ex dx
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Activity 6.3.7 Consider the region bounded by y = 2 x+ 3, y = 0, x = 4, x = 7.

(a) Find an integral which computes the volume of the solid formed by rotating this region
about the x-axis.

(b) Find an integral which computes the volume of the solid formed by rotating this region
about the y-axis.
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6.4 Surface Areas of Revolution (AI4)

Learning Outcomes
• Compute surface areas of surfaces of revolution.
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Fact 6.4.1 A frustum is the portion of a cone that lies between one or two parallel planes.

x

y

0 1 2 3 4

−2

−1

0

1

2
l

r
R

Figure 83 Plot of a frustum.
The surface area of the “side” of the frustum is:

2π
r +R

2
· l

where r and R are the radii of the bases, and l is the length of the side.
Note that if r = R, this reduces to the surface area of a “side” of a cylinder.
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Activity 6.4.2 Suppose we wanted to find the surface area of the the solid of revolution
generated by rotating

y =
√
x, 0 ≤ x ≤ 4

about the y-axis.

x

y

1 2 3 4

−3

−2

−1

0

1

2

3

Figure 84 Plot of bounded region rotated about x-axis.
(a) Suppose we wanted to estimate the surface area with two frustums with ∆x = 2.

x

y

1 2 3 4

−3

−2

−1

0

1

2

3

Figure 85 Plot of bounded region rotated about x-axis.
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What is the surface area of the frustum formed by rotating the line segment from (0, 0)
to (2,

√
2) about the x-axis?

A 2π
0 +

√
2

2
· 2

B 2π
0 +

√
2

2
·
√

22 +
√
2
2

C π
√
2
2
· 2

D π
√
2
2
·
√

22 +
√
2
2

x

y

1 2 3 4

−3

−2

−1

0

1

2

3

Figure 86 Plot of bounded region rotated about the x-axis.
(b) What is the surface area of the frustum formed by rotating the line segment from

(2,
√
2) to (4, 2) about the x-axis?

A 2π
4 +

√
2

2
·
√
2

B 2π
4 +

√
2

2
·
√
6

C 2π
4 +

√
2

2
·
√

6− 2
√
2

(c) Suppose we wanted to estimate the surface area with four frustums with ∆x = 1.
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x

y

1 2 3 4

−3

−2

−1

0

1

2

3

Figure 87 Plot of bounded region rotated about x-axis.

xi ∆x ri Ri l Estimated Surface Area
x1 = 0 1 0 1

√
12 + 12

x2 = 1 1 1
√
2
√

12 + (
√
2− 1)2

x3 = 2 1
√
2

√
3

x4 = 3 1 3 2

(d) Suppose we wanted to estimate the surface area with n frustums.
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x

y

1 2 3 4

−3

−2

−1

0

1

2

3

∆x

Figure 88 Plot of bounded region rotated about x-axis.
Let f(x) =

√
x. Which of the following expressions represents the surface area gen-

erated bo rotating the line segment from (x0, f(x0)) to (∆x, f(x0 + ∆x)) about the
x-axis?

A π

(
f(x0) + f(x0 +∆x)

2

)2√
(∆x)2 + (f(x0 +∆x)− f(x0))2.

B 2π
f(x0) + f(x0 +∆x)

2

√
(∆x)2 + (f(x0 +∆x)− f(x0))2.

C 2π
f(x0) + f(x0 +∆x)

2
∆x.

(e) Which of the following Riemann sums best estimates the surface area of the solid
generated by rotating y =

√
x over [0, 4] about the x-axis ? Let f(x) =

√
x.

A
∑

π

(
f(xi) + f(xi +∆x)

2

)2√
(∆x)2 + (f(xi +∆x)− f(xi))2.

B
∑

2π
f(xi) + f(xi +∆x)

2

√
(∆x)2 + (f(xi +∆x)− f(xi))2.

C
∑

2π
f(xi) + f(x0 +∆x)

2
∆x.
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Fact 6.4.3 Recall from Fact 6.2.2 that

lim
∆x→0

√
(∆x)2 + (f(xi +∆x)− f(xi))2 = lim

∆x→0

√√√√(∆x)2

(
1 +

(
f(xi +∆x)− f(xi)

∆x

)2
)

= lim
∆x→0

√
1 +

(
f(xi +∆x)− f(xi)

∆x

)2

∆x

=
√

1 + (f ′(x))2dx,

and that
lim

∆x→0

f(xi) + f(xi +∆x)

2
= f(xi).

Thus given a function f(x) ≥ 0 over [a, b], the surface area of the solid generated by
rotating this function about the x-axis is

SA =

∫ b

a

2πf(x)
√

1 + (f ′(x))2dx.
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Activity 6.4.4 Consider again the solid generated by rotating y =
√
x over [0, 4] about the

x-axis.

(a) Find an integral which computes the surface area of this solid.

(b) If we instead rotate y =
√
x over [0, 4] about the y-axis, what is an integral which

computes the surface area for this solid?
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Activity 6.4.5 Consider again the function f(x) = ln(x) + 1 over [1, 5].

(a) Find an integral which computes the surface area of the solid generated by rotating
the above curve about the x-axis.

(b) Find an integral which computes the surface area of the solid generated by rotating
the above curve about the y-axis.
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6.5 Density, Mass, and Center of Mass (AI5)

Learning Outcomes
• Set up integrals to solve problems involving density, mass, and center of mass.
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Activity 6.5.1 Consider a rectangular prism with a 10 meters × 10 meters square base and
height 20 meters. Suppose the density of the material in the prism increases with height,
following the function δ(h) = 10 + h kg/m3, where h is the height in meters.

(a) If one were to cut this prism, parallel to the base, into 4 pieces with height 5 meters,
what would the volume of each piece be?

(b) Consider the piece sitting on top of the slice made at height h = 5. Using a density of
δ(5) = 15 kg/m3, and the volume you found in (a), estimate the mass of this piece.

A. 500 · 5 = 2500 kg
B. 500 · 15 = 7500 kg

C. 500 · 15 · 5 = 37500 kg

(c) Is this estimate the actual mass of this piece?
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Activity 6.5.2 Consider all 4 slices from Activity 6.5.1.

∆h = 5 m

h1 = 0 m

h2 = 5 m

h3 = 10 m

h4 = 15 m

20 m

Figure 89 10× 10× 20 prism sliced into 4 pieces.

(a) Fill out the following table.

hi δ(hi) Volume Estimated Mass
h4 = 15 m δ(15) = 25 kg/m3 500 m3

h3 = 10 m δ(10) = 20 kg/m3 500 m3

h2 = 5 m δ(5) = 15 kg/m3 500 m3 7500 kg
h1 = 0 m δ(0) = 10 kg/m3 500 m3

(b) What is the estimated mass of the rectangular prism?



Density, Mass, and Center of Mass (AI5)

Activity 6.5.3 Suppose instead that we sliced the prism from Activity 6.5.1 into 5 pices of
height 4 meters.

∆h = 4 m

h1 = 0 m

h2 = 4 m

h3 = 8 m

h4 = 12 m

h5 = 16 m

20 m

Figure 90 10× 10× 20 prism sliced into 5 pieces.

(a) Fill out the following table.

hi δ(hi) Volume Estimated Mass
h5 = 16 m δ(16) = 26 kg/m3 400 m3

h4 = 12 m δ(12) = 22 kg/m3 400 m3

h3 = 8 m δ(8) = 18 kg/m3 400 m3

h2 = 4 m δ(4) = 14 kg/m3 400 m3

h1 = 0 m δ(0) = 10 kg/m3 400 m3

(b) What is the estimated mass of the rectangular prism?



Density, Mass, and Center of Mass (AI5)

Activity 6.5.4 Which of the estimates computed in Activity 6.5.2 and Activity 6.5.3 is a
better estimate of the mass of the prism?

A. Activity 6.5.2, 4 pieces is a better esti-
mate.

B. Activity 6.5.3, 5 pieces is a better esti-
mate.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.5 Suppose now that we slice the prism from Activity 6.5.1 into slices of height
∆h meters.

...

...

∆hhi20 m

Figure 91 10× 10× 20 prism sliced into many pieces.

(a) Consider the piece sitting atop the slice made at height hi. Using δ(hi) = 10 + hi as
the estimate for the density of this piece, what is the mass of this piece?

A. (10 + h)100 · hi

B. (10 + ∆h)100 · hi

C. (10 + hi)100 ·∆h

D. (10 + hi)100 · h



Density, Mass, and Center of Mass (AI5)

Activity 6.5.6 Consider a cylindrical cone with a base radius of 15 inches and a height of
60 inches. Suppose the density of the cone is δ(h) = 15 +

√
h oz/in3.

∆h = 30 in

∆h = 30 in

r1 = 15 in

r2

B C

B′ C′

C′

60 in

Figure 92 15× 60 cylindrical cone sliced into two pieces.

(a) Let r2 be the radius of the circular cross section of the cone, made at height 30 inches.
Recall that ∆ABC,∆AB′C ′ are similar triangles, what is r2?

A. 15 inches.
B. 7.5 inches.

C. 30 inches.
D. 60 inches.

(b) What is the volume of a cylinder with radius r1 = 15 inches and height 30 inches?

(c) What is the volume of a cylinder with radius r2 inches and height 30 inches?



Density, Mass, and Center of Mass (AI5)

Activity 6.5.7 Suppose that we estimate the mass of the cone from Activity 6.5.6 with 2
cylinders of height 30 inches.

∆h = 30 in

∆h = 30 in

r1 = 15 in

r2
60 in

h1 = 0 in

h2 = 30 in

Figure 93 15× 60 cylindrical cone sliced into two pieces.

(a) Fill out the following table.

hi δ(hi) Volume Estimated Mass
h2 = 30 m δ(30) = 15 +

√
30 oz/in3 π(7.5)2 · 30 in3

h1 = 0 m δ(0) = 15 oz/in3 π(15)2 · 30 in3

(b) What is the estimated mass of the cone?



Density, Mass, and Center of Mass (AI5)

Activity 6.5.8 Suppose that we estimate the mass of the cone from Activity 6.5.6 with 3
cylinders of height 20 inches.

∆h = 20 in

∆h = 20 in

∆h = 20 in

r1 = 15 in

r2 = 10 in

r3 = 5 in

60 in

h1 = 0 in

h2 = 20 in

h3 = 40 in

Figure 94 15× 60 cylindrical cone sliced into three pieces.

(a) Fill out the following table.

hi δ(hi) Volume Estimated Mass
h2 = 40 m δ(40) = 15 +

√
40 oz/in3 π(5)2 · 20 in3

h2 = 20 m δ(20) = 15 +
√
20 oz/in3 π(10)2 · 20 in3

h1 = 0 m δ(0) = 15 oz/in3 π(15)2 · 20 in3

(b) What is the estimated mass of the cone?



Density, Mass, and Center of Mass (AI5)

Activity 6.5.9 Suppose that we estimate the mass of the cone from Activity 6.5.6 with
cylinders of height ∆h.

∆h in

...

...

ri

60 in hi

Figure 95 15× 60 cylindrical cone sliced into many pieces.

(a) Consider the piece sitting atop the slice made at height hi. Using δ(hi) = 15 +
√
hi as

the estimate for the density of this cylinder, what is the mass of this cylinder?

A. (15 +
√
h)πr2i ·∆h

B. (15 +
√

hi)πr
2
i ·∆h

C. (15 + ∆h)πr2i ·∆hi

D. (15 +
√

hi)πr
2 ·∆h



Density, Mass, and Center of Mass (AI5)

Activity 6.5.10 Consider a solid where the cross section of the solid at x = xi has area
A(xi), and the density when x = xi is δ(xi).

x

xi

∆x

Figure 96 Solid approximated with prisms of width ∆x.

(a) If we used prisms of width ∆x to approximate this solid, what is the mass of the slice
associated with xi?

A. A(x)δ(x)∆x

B. πA(x)2δ(xi)∆x

C. A(xi)δ(xi)∆x

D. A(xi)δ(xi)∆xi



Density, Mass, and Center of Mass (AI5)

Fact 6.5.11 Consider a solid where the cross section of the solid at x = xi has area A(xi),
and the density when x = xi is δ(xi). Suppose the interval [a, b] represents the x values of
this solid. If one slices the solid into n pieces of width ∆x = b−a

n
, then one can approximate

the mass of the solid by
n∑

i=1

δ(xi)A(xi)∆x.

x

∆x

Figure 97 Solid approximated with prisms of width ∆x.
We can then find actual mass by taking the limit as n → ∞:

lim
n→∞

(
n∑

i=1

δ(xi)A(xi)∆x

)
=

∫ b

a

δ(x)A(x)dx.

x

Figure 98 Solid mass.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.12 Consider that for the prism from Activity 6.5.1, a cross section of height
h is A(h) = 102 = 100 m2. Also recall that the density of the prism is δ(h) = 10 + h kg/m3,
where h is the height in meters.

Use Fact 6.5.11 to find the mass of the prism.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.13 Consider that for the cone from Activity 6.5.6, a cross section of height h
is A(h) = πr2 in2, where r is the radius of the circular cross-section at height h inches. Also
recall that the density of the cone is δ(h) = 15 +

√
h oz/in3, where h is the height in inches.

(a) When the height is h inches, what is r?Use similar triangles:

15 in

r

60 in

h

60− h

Figure 99 The right triangles in this figure are similar.

(b) Find A(h) as a function of h using this information.

(c) Use Fact 6.5.11 to find the mass of the cone.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.14 Consider a pyramid with a 8 × 8 ft square base and a height of 16 feet.
Suppose the density of the pyramid is δ(h) = 10 + cos(πh) lb/ft3 where h is the height in
feet.

(a) When the height is h feet, what is the area of the square cross section at that height,
A(h)?Use similar triangles:

8 ft

b

16 ft

h

16− h

Figure 100 The triangles in this figure are similar.

(b) Use Fact 6.5.11 to find the mass of the pyramid.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.15 Consider a board sitting atop the x-axis with six 1×1 blocks each weighing
1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop
the 2, and one block is atop the 6.

x1 2 3 4 5 6 7 8

Figure 101 Six 1 kg blocks atop the x-axis.
Which of the following describes the x-value of the center of gravity of the board with

the blocks?

A. 1 + 6

2
= 3.5.

B. 1 + 2 + 6

3
= 3.

C. 2 · 1 + 3 · 2 + 1 · 6
6

≈ 2.3333.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.16 Consider a board sitting atop the x-axis with six 1×1 blocks each weighing
1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop
the 2, and one block is atop the 8.

x1 2 3 4 5 6 7 8

Figure 102 Six 1 kg blocks atop the x-axis.
Find the x-value of the center of gravity of the board with the blocks.



Density, Mass, and Center of Mass (AI5)

Fact 6.5.17 Consider a solid where the cross section of the solid at x = xi has area A(xi),
and the density when x = xi is δ(xi). Suppose the interval [a, b] represents the x values of
this solid. Since each slice has approximate mass δ(xi)A(xi)δ(xi), we can approximate the
center of mass by taking the weighted “average” of the xi-values weighted by the associated
mass: ∑n

i=1 xiδ(xi)A(xi)∆x∑n
i=1 δ(xi)A(xi)∆x

.

x

∆x

Figure 103 Solid approximated with prisms of width ∆x.
We can then find actual center of mass by taking the limit as n → ∞:

lim
n→∞

(∑n
i=1 xiδ(xi)A(xi)∆x∑n
i=1 δ(xi)A(xi)∆x

)
=

∫ b

a
xδ(x)A(x)dx∫ b

a
δ(x)A(x)dx

=

∫ b

a
xδ(x)A(x)dx

The Total Mass .

x

Figure 104 Solid mass.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.18 Consider that for the prism from Activity 6.5.12, a cross section of height
h is A(h) = 102 = 100 m2. Also recall that the density of the prism is δ(h) = 10 + h kg/m3,
where h is the height in meters, and that we found the total mass to be 40000 kg.

Use Fact 6.5.17 to find the height where the center of mass occurs.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.19 Consider that for the prism from Activity 6.5.13, a cross section of height
h is A(h) = π ·

(
60−h
4

)2 in2. Also recall that the density of the cone is δ(h) = 15+
√
h oz/in3,

where h is the height in inches, and that we found the total mass to be about 142492.6 oz.
Use Fact 6.5.17 to find the height where the center of mass occurs.



Density, Mass, and Center of Mass (AI5)

Activity 6.5.20 Consider that for the pyramid from Activity 6.5.14, a cross section of height
h is A(h) = π ·

(
16−h
2

)2 ft2. Also recall that the density of the pyramid is δ(h) = 10 + cos πh
lb/feet3, where h is the height in feet, and that we found the total mass to be about 3414.14.6
lbs.

Use Fact 6.5.17 to find the height where the center of mass occurs.



Work (AI6)

6.6 Work (AI6)

Learning Outcomes
• Set up integrals to solve problems involving work.



Work (AI6)

Fact 6.6.1 Given a physical object m, the work done on that object is

W = Fd = mad,

where F is the force applied to the object over a distance of d. Recall that force F = ma,
where m is the mass of the object, and a is the acceleration applied to it.



Work (AI6)

Activity 6.6.2 Consider a bucket with 10 kg of water being pulled against the acceleration
of gravity, g = 9.8 m/s2, at a constant speed for 20 meters. Using Fact 6.6.1, what is the
work needed to pull this bucket up 20 meters in kgm2/s2 (or Nm)?

A. 10 kgm2/s2

B. 20 kgm2/s2

C. 98 kgm2/s2

D. 200 kgm2/s2

E. 1960 kgm2/s2



Work (AI6)

Activity 6.6.3 Consider the bucket from Activity 6.6.2 with 10 kg of water, being pulled
against the acceleration of gravity, g = 9.8 m/s2, at a constant speed for 20 meters. Suppose
that halfway up at a height of 10m, 5kg of water spilled out, leaving 5kg left. How much
total work does it take to get this bucket to a height of 20m?

A. 980 kgm2/s2 or Nm

B. 1470 kgm2/s2 or Nm

C. 1960 kgm2/s2 or Nm



Work (AI6)

Activity 6.6.4 Suppose a 10 kg bucket of water is constantly losing water as it’s pulled up,
so at a height of h meters, the mass of the bucket is m(h) = 2 + 8e−0.2h kg.

∆h = 5 m

hi = 5 m

Figure 105 Bucket 5 m in the air, to be hoisted by another 5 meters.

(a) What is the mass of the bucket at height hi = 5 m?

(b) Assuming that the bucket does not lose water, estimate the amount of work needed to
lift this bucket up ∆h = 5 meters.



Work (AI6)

Activity 6.6.5 using the same the bucket from Activity 6.6.4, consider the bucket’s mass
at heights hi = 0, 5, 10, 15 meters.

∆h = 5 m

∆h = 5 m

∆h = 5 m

∆h = 5 m

h1 = 0 m

h2 = 5 m

h3 = 10 m

h4 = 15 m

Figure 106 Bucket lifted 5 m at a time.

(a) Fill out the following table, estimating the work it would take to lift the bucket 20
meters.

hi Mass m(hi) Distance Estimated Work
h4 = 15 m m(15) = 2 + 8e−0.2·15 ≈ 2.398 kg 5 m
h3 = 10 m m(10) = 2 + 8e−0.2·10 ≈ 3.083 kg 5 m
h2 = 5 m m(5) = 2 + 8e−0.2·5 ≈ 4.943 kg 5 m 242.207 Nm
h1 = 0 m m(5) = 2 + 8e−0.2·0 = 10 kg 5 m

(b) What is the total estimated work to lift this bucket 20 meters?



Work (AI6)

Activity 6.6.6 If we estimate the mass and work of the bucket from Activity 6.6.5 at height
hi with intervals of length ∆h meters, which of the following best represents the Riemann
sum of the work it would take to lift this bucket 20 meters?

A.
∑

hi · 9.8∆h. Nm

B.
∑(

2 + 8e−0.02h
)
· 9.8∆m Nm

C.
∑(

2 + 8e−0.02hi
)
· 9.8∆h Nm

D.
∑(

2 + 8e−0.02hi
)
· 9.8∆m Nm



Work (AI6)

Activity 6.6.7 Based on the Riemann sum chosen in Activity 6.6.6, which of the following
integrals computes the work it would take to lift this bucket 20 meters?

A.
∫ 20

0

hi · 9.8dh. Nm

B.
∫ 20

0

(
2 + 8e−0.02h

)
· 9.8dm Nm

C.
∫ 20

0

(
2 + 8e−0.02h

)
· 9.8dh Nm

D.
∫ 20

0

(
2 + 8e−0.02hi

)
· 9.8dh Nm



Work (AI6)

Activity 6.6.8 Based on the integral chosen in Activity 6.6.7, compute the work it would
take to lift this bucket 20 meters.



Work (AI6)

Observation 6.6.9 A “how to” for applying integrals to physics.

1. Estimate the value over a piece of the problem with x value xi over interval of length
∆x.

2. Find a Riemann sum using (1) which estimates the value in question.

3. Convert the Riemann sum to an integral and solve.



Work (AI6)

Activity 6.6.10 Consider a cylindrical tank filled with water, where the base of the cylinder
has a radius of 3 meters and a height of 10 meters. Consider a 2 meter thick slice of
water sitting 6 meters high in the tank. Using the fact that the mass of this water is
1000 · π(3)2 · 2 = 18000π kg, estimate how much work is needed to lift this slice 4 more
meters to the top of the tank.

∆h = 2 m
hi = 6 m

Figure 107 2m thick slice of water lifted 4m.

A. 18000π · 4 Nm

B. 18000π · 9.8 Nm

C. 18000π · 4 · 9.8 Nm

D. 18000π · 6 Nm

E. 18000π · 6 · 9.8 Nm



Work (AI6)

Activity 6.6.11 Consider the cylindrical tank filled with water from Activity 6.6.10. We
wish to estimate the amount of work required to pump all the water out of the tank. Suppose
we slice the water into 5 pieces and estimate the work it would take to lift each piece out of
the tank.

∆h = 2 m

∆h = 2 m

∆h = 2 m

∆h = 2 m

∆h = 2 m

Figure 108 2m thick slices of water.

(a) Fill out the following table, estimating the work it would take to pump all the water
out.

hi Mass Distance Estimated Work
h5 = 8 m 18000π kg
h4 = 6 m 18000π kg 4 m 705600π Nm
h3 = 4 m 18000π kg
h2 = 2 m 18000π kg
h1 = 0 m 18000π kg 10 m

(b) What is the total estimated work to pump out all the water?



Work (AI6)

Activity 6.6.12 Recall Activity 6.6.11. If we estimate the work needed to lift slices of
thickness ∆h m at heights hi m, which of the following Riemann sums best estimates the
total work needed to pump all the water from the tank?

A.
∑

1000 · π32 · 9.8(10− h)∆h Nm

B.
∑

1000 · π32 · 9.8(10− hi)∆h Nm

C.
∑

1000 · π(hi)
2 · 9.8(10− h)∆h Nm

D.
∑

1000 · π(hi)
2 · 9.8(10− hi)∆h Nm



Work (AI6)

Activity 6.6.13 Based on the Riemann sum chosen in Activity 6.6.12, which of the following
integrals computes the work it would take to pump all the water from the tank?

A.
∫ 10

0

9000π · 9.8(10− h)dh Nm

B.
∫ 10

0

1000π · 9.8h2(10− h)dh Nm



Work (AI6)

Activity 6.6.14 Based on the integral chosen in Activity 6.6.13, compute the work it would
take to pump all the water out of the tank.



Work (AI6)

Activity 6.6.15 Consider a cylindrical truncated-cone tank where the radius on the bottom
of the tank is 10 m, the radius at the top of the tank is 100 m, and the height of the tank is
100m.

ri

∆h
100 m

hi

10 m

20 m

Figure 109 A slice at height hi of width ∆h.

(a) What is the radius ri in meters of the cross section made at height hi meters?

(b) What is the volume of a cylinder with radius ri meters with width ∆h meters?

(c) Using the fact that water has density 1000 kg/m3, what is the mass of the volume of
water you found in (b)?

(d) How far must this cylinder of water be lifted to be out of the tank?



Work (AI6)

Activity 6.6.16 Recall the computations done in Activity 6.6.15.

(a) Find a Riemann sum which estimates the total work needed to pump all the water out
of this tank, using slices at heights hi m, of width ∆h m.

(b) Use (a) to find an integral expression which computes the amount of work needed to
pump all the water out of this tank.

(c) Evaluate the integral found in (b).



Force and Pressure (AI7)

6.7 Force and Pressure (AI7)

Learning Outcomes
• Set up integrals to solve problems involving force and/or pressure.



Force and Pressure (AI7)

Fact 6.7.1 Recall that pressure is measured as force over area:

P = F/A.

Rewriting this, we have that F = PA.



Force and Pressure (AI7)

Activity 6.7.2 Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90 feet
wide at its top. Assume the dam is 20 feet tall with water that rises to its top. Water weighs
62.4 pounds per cubic foot and exerts P = 62.4d lbs/ft2 of pressure at depth d ft. Consider
a rectangular slice of this dam at height hi feet and width bi.

bi

∆h20 ft hi

60 ft

90 ft

Figure 110 A slice at height hi of width ∆h.

(a) At a height of hi feet, what is the base of the rectangle bi?

(b) What is the area of a rectangle with base bi feet and height ∆h feet?

(c) Using a depth of 20− hi feet, how much pressure is exerted on this rectangle?

(d) Using the pressure found in (c), the area in (b), and Fact 6.7.1, how much force is
exerted on this rectangle?



Force and Pressure (AI7)

Activity 6.7.3 Recall the computations done in Activity 6.7.2.

(a) Find a Riemann sum which estimates the total force exerted on the dam, using slices
at heights hi m, of width ∆h m.

(b) Use (a) to find an integral expression which computes the amount of force exerted on
this dam.

(c) Evaluate the integral found in (b).



Chapter 7

Coordinates and Vectors (CO)

Learning Outcomes
How do we use alternative coordinates and vectors to describe points in the plane?
By the end of this chapter, you should be able to...

1. Sketch the graph of a two-dimensional parametric/vector equation, and convert such
equations into equations of only x and y.

2. Compute derivatives and tangents related to two-dimensional parametric/vector equa-
tions.

3. Compute arclengths related to two-dimensional parametric/vector equations.

4. Convert points and equations between polar and Cartesian coordinates and equations.

5. Compute arclengths of curves given in polar coordinates.

6. Compute areas bounded by curves given in polar coordinates.

637



Parametric/Vector Equations (CO1)

7.1 Parametric/Vector Equations (CO1)

Learning Outcomes
• Sketch the graph of a two-dimensional parametric/vector equation, and convert such

equations into equations of only x and y.



Parametric/Vector Equations (CO1)

Activity 7.1.1 Consider how we might graph the equation y = 2− x2 in the xy-plane.

(a) Complete the following chart of xy values by plugging each x value into the equation
to produce its y value.
Table 111 Chart of x and y values to graph

x y

−2

−1 1

0

1

2

(b) Plot each point (x, y) in your chart in the xy plane.

(c) Connect the dots to obtain a reasonable sketch of the equation’s graph.



Parametric/Vector Equations (CO1)

Activity 7.1.2 Suppose that we are told that at after t seconds, an object is located at the
x-coordinate given by x = t− 2 and the y-coordinate given by y = −t2 + 4t− 2.

(a) Complete the following chart of txy values by plugging each t value into the equations
to produce its x and y values.
Table 112 Chart of x and y values for each t

t x y

0

1 −1 1

2

3

4

(b) Plot each point (x, y) in your chart in the xy plane, labeling it with its t value.

(c) Connect the dots to obtain a reasonable sketch of the equation’s graph.



Parametric/Vector Equations (CO1)

Definition 7.1.3 Graphs in the xy plane can be described by parametric equations
x = f(t) and y = g(t), where plugging in different values of t into the functions f and g
produces different points of the graph.

The t-values may be thought of representing the moment of time when an object is
located at a particular position, and the graph may be thought of as the path the object
travels throughout time. ♢



Parametric/Vector Equations (CO1)

Activity 7.1.4 Earlier we obtained the same graphs for the xy equation y = 2−x2 and the
parametric equations x = t− 2 and y = −t2 +4t− 2. Do the following steps to find out why.

(a) Which of the following equations describes t in terms of x?

A. t = x− 2

B. t = x+ 2

C. t = 2x

D. t = −2x

(b) Which of these is the result of plugging this choice in for t in the parametric equation
for y?

A. y = −x+ 22 + 4x+ 2− 2

B. y = −(x+ 2)2 + 4(x+ 2)− 2

C. y = −x2 + 22 + 4x+ 4 · 2− 2

(c) Show how to simplify this choice to obtain the equation y = 2− x2.



Parametric/Vector Equations (CO1)

Fact 7.1.5 One method of graphing parametric equations x = f(t) and y = g(t) is to combine
them into a single equation only involving x and y, and using your usual graphing techniques.



Parametric/Vector Equations (CO1)

Activity 7.1.6 Parametric equations have the advantage of describing paths that cannot
be described by a function y = h(x). One such example is the graph of x = 3 sin(πt)
and y = −3 cos(πt). (Use technology or the approximation

√
2 ≈ 0.707 to approximate

coordinates as needed.)

(a) Complete the folowing table.

Table 113 Chart of approximate x and y values

t x y

0

1/4

1/2

3/4 2.12 2.12

1

5/4

3/2

7/4

2

(b) Plot these (x, y) points in the xy plane and connect the dots to draw a sketch of the
graph.

(c) What do you obtain by plugging the parametric equations into the expression x2+ y2?

A. x2 + y2 = −6 sin(πx) cos(πx)
B. x2 + y2 = 9

C. x2 + y2 = 6 sin(πx) cos(πx)
D. x2 + y2 = 0

(d) Which of these describes the xy equation and graph given by these parametric equa-
tions?

A. a parabola
B. a line

C. a circle
D. a square

(e) The graph of these parametric equations cannot be described by a function. Why?

A. The graph fails the vertical line test.
B. The graph fails the horizontal line test.
C. The graph doesn’t extend vertically to +∞.
D. The graph doesn’t extend horizontally to −∞.



Parametric/Vector Equations (CO1)

Definition 7.1.7 The parametric equations x = f(t) and y = g(t) are sometimes written in
the form of the vector equation r⃗ = ⟨f(t), g(t)⟩.

For example, the parametric equations x = 3 sin(πt) and y = −3 cos(πt) may be combined
into the single vector equation r⃗ = ⟨3 sin(πt),−3 cos(πt)⟩. ♢



Parametric/Vector Equations (CO1)

Activity 7.1.8 Consider the vector equation r⃗ = ⟨2t− 3,−6t+ 13⟩.

(a) What are the corresponding parametric equations?

A. x = 2t− 3 and y = −6t+ 13

B. y = 2t− 3 and x = −6t+ 13

C. xy = 2t− 3− 6t+ 13

D. Vector equations cannot be converted into parametric equations.

(b) Draw a table of t, x, and y values with t = 0, 1, 2, 3, 4.

(c) Plot these (x, y) points in the plane and connect the dots to sketch the graph of this
vector equation.

(d) Solve for t in terms of x and plug into the y parametric equation to show that this is
the vector equation for the line y = −3x+ 4.



Parametric/Vector Derivatives (CO2)

7.2 Parametric/Vector Derivatives (CO2)

Learning Outcomes
• Compute derivatives and tangents related to two-dimensional parametric/vector equa-

tions.



Parametric/Vector Derivatives (CO2)

Activity 7.2.1 Consider the parametric equations x = 2t− 1 and y = (2t− 1)(2t− 5). The
coordinate on this graph at t = 2 is (3,−3).

(a) Which of the following equations of x, y describes the graph of these paramteric equa-
tions?

A. y = 2x(x+ 2) = 2x2 + 2x

B. y = 2x(x− 2) = 2x2 − 2x

C. y = x(x+ 4) = x2 + 4x

D. y = x(x− 4) = x2 − 4x

(b) Which of the following describes the slope of the line tangent to the graph at the point
(3,−3)?

A. dy
dx

= 2x+ 4, which is 10 when x = 3.
B. dy

dx
= 2x+ 4, which is 8 when t = 2.

C. dy
dx

= 2x− 4, which is 2 when x = 3.
D. dy

dx
= 2x− 4, which is 0 when t = 2.

(c) Note that the parametric equation for y simplifies to y = 4t2 − 12t + 5. What do we
get for the derivatives dx

dt
of x = 2t− 1 and dy

dt
for y = 4t2 − 12t+ 5?

A. dx
dt

= 2 and dy
dt

= 8t− 12.
B. dx

dt
= −1 and dy

dt
= 8t− 12.

C. dx
dt

= 2 and dy
dt

= 6t+ 5.
D. dx

dt
= −1 and dy

dt
= 6t+ 5.

(d) It follows that when t = 2, dx
dt

= 2 and dy
dt

= 4. Which of the following conjectures
seems most likely?

A. The slope dy
dx

could also be found by
computing dx

dt
+ dy

dt
.

B. The slope dy
dx

could also be found by

computing dy/dt
dx/dt

.

C. The slope dy
dx

is always equal to dx
dt

.
D. The slope dy

dx
is always equal to dy

dt
.



Parametric/Vector Derivatives (CO2)

Fact 7.2.2 Suppose x is a function of t, and y may be thought of as a function of either x
or t. Then the Chain Rule requires that

dy

dt
=

dy

dx

dx

dt
.

This provides the slope formula for parametric equations:

dy

dx
=

dy/dt

dx/dt
.



Parametric/Vector Derivatives (CO2)

Activity 7.2.3 Let’s draw the picture of the line tangent to the parametric equations x =
2t− 1 and y = (2t− 1)(2t− 5) when t = 2.

(a) Use a t, x, y chart to sketch the parabola given by these parametric equations for
0 ≤ t ≤ 3, including the point (3,−3) when t = 2.

(b) Earlier we determined that the slope of the tangent line was 2. Draw a line with slope
2 passing through (3,−3) and confirm that it appears to be tangent.

(c) Use the point-slope formula y−y0 = m(x−x0) along with the slope 2 and point (3,−3)
to find the exact equation for this tangent line.

A. y = 2x− 10

B. y = 2x− 9

C. y = 2x− 8

D. y = 2x− 7



Parametric/Vector Derivatives (CO2)

Activity 7.2.4 Consider the vector equation r⃗(t) = ⟨3t2 − 9, t3 − 3t⟩.

(a) What are the corresponding parametric equations and their derivatives?

A. y = 3t2 − 9 and x = t3 − 3t; dy
dt

= 9t
and dx

dt
= 3t− 6

B. x = 3t2 − 9 and y = t3 − 3t; dx
dt

= 9t

and dy
dt

= 3t− 6

C. y = 3t2 − 9 and x = t3 − 3t; dy
dt

= 6t
and dx

dt
= 3t2 − 3

D. x = 3t2 − 9 and y = t3 − 3t; dx
dt

= 6t

and dy
dt

= 3t2 − 3

(b) The formula dy
dx

= dy/dt
dx/dt

allows us to compute slopes as which of the following functions
of t?

A. 6t

t2 + 3

B. 6t

t2 + 1

C. t2 − 1

2t

D. 2t

3t2 − 1

(c) Find the point, tangent slope, and tangent line equation (recall y − y0 = m(x − x0))
corresponding to the parameter t = −3.

A. Point (−12, 9), slope −4
3
, EQ y =

−4
3
x− 7

B. Point (18,−18), slope −4
3
, EQ y =

−4
3
x+ 6

C. Point (−12, 9), slope 3
4
, EQ y = 3

4
x−

8

D. Point (18,−18), slope 3
4
, EQ y =

3
4
x+ 5



Parametric/Vector Arclength (CO3)

7.3 Parametric/Vector Arclength (CO3)

Learning Outcomes
• Compute arclengths related to two-dimensional parametric/vector equations.



Parametric/Vector Arclength (CO3)

In Figure 167, the blue curve is the graph of the parametric equations x = t2 and y = t3

for 1 ≤ t ≤ 2. This curve connects the point (1, 1) to the point (4, 8). The red dashed line
is the straight line segment connecting these points.

1 2 3 4 5

2

4

6

8

10

Figure 114 A parametric curve and segment from (1, 1) to (4, 8)

□



Parametric/Vector Arclength (CO3)

Activity 7.3.2 Let’s first investigate the length of the dashed red line segment in Figure 167.

(a) Draw a right triangle with the red dashed line segment as its hypotenuse, one leg
parallel to the x-axis, and the other parallel to the y-axis.
How long are these legs?

A. 3 and 7.
B. 4 and 8.

C. 3 and 8.
D. 4 and 7.

(b) The Pythagorean theorem states that for a right triangle with leg lengths a, b and
hypotenuse length c, we have...

A. a = b = c.
B. a+ b = c.

C. a2 = b2 = c2.
D. a2 + b2 = c2.

(c) Using the leg lengths and Pythagorean theorem, how long must the red dashed hy-
potenuse be?

A.
√
20 ≈ 4.47.

B.
√
58 ≈ 7.62.

C.
√
67 ≈ 8.19.

D.
√
100 = 10.

(d) Compared with the blue parametric curve connecting the same two points, is the red
dashed line segement length an overestimate or underestimate?

A. Overestimate: the blue curve is
shorter than the red line.

B. Underestimate: the blue curve is

longer than the red line.
C. Exact: the blue curve is exactly as

long as the red line.



Parametric/Vector Arclength (CO3)

Fact 7.3.3 Recall that the linear distance between two points (x1, y1) and (x2, y2) may be
computed by the distance formula√

(x2 − x1)2 + (y2 − y1)2.

Note that ∆x = |x2 − x1| and ∆y = |y2 − y1| measure leg lengths of a right triangle whose
hypotenuse is the distance we want to measure, so we may rewrite this formula as√

(∆x)2 + (∆y)2.

This formula will need to be modified to measure a curved path between two points.



Parametric/Vector Arclength (CO3)

Observation 7.3.4 By approximating the curve by several (say N) segements connecting
points along the curve, we obtain a better approximation than a single line segment. For
example, the illustration shown in Figure 168 gives three segments whose distances sum to
about 7.6315, while the actual length of the curve turns out to be about 7.6337.

1 2 3 4 5

2

4

6

8

10

Figure 115 Subdividing a parametric curve where N = 3



Parametric/Vector Arclength (CO3)

Activity 7.3.5 How should we modify the distance formula
√
(∆x)2 + (∆y)2 to measure

arclength as illustrated in Figure 168?

(a) Let ∆L1,∆L2,∆L3 describe the lengths of each of the three segements. Which expres-
sion describes the total length of these segments?

A. ∆L1 ×∆L2 ×∆L3

B. ∆L1 + 2∆L2 + 3∆L3

C.
3∑

i=1

∆Li

(b) We can let each ∆Li =
√

(∆xi)2 + (∆yi)2. But we will find it useful to involve the
parameter t as well, or more accurately, the change ∆ti of t between each point of the
subdivision.
Which of these is algebraically the same as the above formula for ∆Li?

A.

√(
∆xi

∆ti

)2

+

(
∆yi
∆ti

)2

B.

√√√√[(∆xi

∆ti

)2

+

(
∆yi
∆ti

)2
]
∆ti

C.

√(
∆xi

∆ti

)2

+

(
∆yi
∆ti

)2

∆ti

(c) Finally, we’ll want to increase N from 3 so that it limits to ∞. What can we conclude
when that happens?

A. Each segment is infintely small.

B. ∆xi → 0

C. ∆xi

∆ti
→ dx

dt

D. All of the above.



Parametric/Vector Arclength (CO3)

Observation 7.3.6 Put together, and limiting the subdivisions of the curve N → ∞, we
obtain the Riemann sum

lim
N→∞

N∑
i=1

√(
∆xi

∆ti

)2

+

(
∆yi
∆ti

)2

∆ti.

Thus arclength along a parametric curve from a ≤ t ≤ b may be calculated by using the
corresponding definite integral

∫ t=b

t=a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.



Parametric/Vector Arclength (CO3)

Activity 7.3.7 Let’s gain confidence in the arclength formula

∫ t=b

t=a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

by checking to make sure it matches the distance formula for line segments.
The parametric equations x = 3t− 1 and y = 2− 4t for 1 ≤ t ≤ 3 represent the segment

of the line y = −4
3
x− 2

3
connecting (2,−2) to (8,−10).

(a) Find dx/dt and dy/dt, and substitute them into the formula above along with a = 1
and b = 3.

(b) Show that the value of this formula is 10.

(c) Show that the length of the line segment connecting (2,−2) to (8,−10) is 10 by applying
the distance formula directly instead.



Parametric/Vector Arclength (CO3)

Activity 7.3.8 For each of these parametric equations, use

∫ t=b

t=a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

to write a definite integral that computes the given length. (Do not evaluate the integral.)

(a) The portion of x = sin 3t, y = cos 3t where 0 ≤ t ≤ π/6.

(b) The portion of x = et, y = ln t where 1 ≤ t ≤ e.

(c) The portion of x = t+ 1, y = t2 between the points (3, 4) and (5, 16).



Parametric/Vector Arclength (CO3)

Activity 7.3.9 Let’s see how to modify
∫ t=b

t=a

√(
dx
dt

)2
+
(
dy
dt

)2
dt to produce the arclength of

the graph of a function y = f(x).

(a) Let x = t. How can dx
dt

be simplified?

A. dx

B. dt

C. 1

D. 0

(b) Given x = t, how should dy
dt

and dt be rewritten?

A. dy
dt

= dy
dx

and dt = dx.
B. dy

dt
= dx

dt
and dt = dx.

C. dy
dt

= dy
dx

and dt = 1.
D. dy

dt
= dy

dt
and dt = 1.

(c) Write a modified, simplified formula for
∫ t=b

t=a

√(
dx
dt

)2
+
(
dy
dt

)2
dt with t replaced with x.



Polar Coordinates (CO4)

7.4 Polar Coordinates (CO4)

Learning Outcomes
• Convert points and equations between polar and Cartesian coordinates and equations.



Polar Coordinates (CO4)

Fact 7.4.1 “As the crow flies” is an idiom used to describe the most direct path between
two points. The polar coordinate system is a useful parametrization of the plane that,
rather than describing horizontal and vertical position relative to the origin in the usual way,
describes a point in terms of distance from the origin and direction. The origin is also known
as the pole (hence polar coordinates).

Let OP be a line segment from the origin to a given point P in the plane. The length of
OP is the distance (or radius) r from the origin to P . The polar axis is a ray starting at
the origin.

To define the ”direction” of P , we form an angle θ by letting the polar axis serve as the
initial ray and −→

OP as the terminal ray. We will set the positive x-axis as the polar axis
and assume the movement in the positive direction is counter-clockwise (as in trigonometry).
Notice that, unlike in the rectangular (or Cartesian) coordinate system, the polar coordinates
(r, θ) for a point are not unique, as we could turn either way to face a given point (or even
spin around a number of times before facing that direction).

Furthermore, by allowing r to be negative, we can also ”walk backwards” to get to a point
by facing in the opposite direction. Rather than the grid lines defined by specific values for x
and y in the rectangular coordinate system, specific values of r correspond to circles of radius
r centered about the origin, and specific values of θ correspond to lines going through the pole
(called radial lines).



Polar Coordinates (CO4)

Activity 7.4.2

(a) Plot the Cartesian point P = (x, y) = (
√
3,−1) and draw line segments connecting the

origin to P , the origin to (x, y) = (
√
3, 0), and P to (x, y) = (

√
3, 0).

(b) Solve the triangle formed by the line segments you just drew (i.e. find the lengths of
all sides and the measures of each angle).

(c) Find all polar coordinates for the Cartesian point (x, y) = (
√
3,−1).

(d) Find Cartesian coordinates for the polar point (r, θ) =

(
−
√
2,

3π

4

)
.



Polar Coordinates (CO4)

Activity 7.4.3 Graph each of the following.

(a) r = 1

(b) r = −1

(c) θ =
π

6

(d) θ =
7π

6

(e) θ =
−5π

6

(f) 1 ≤ r < −1, 0 ≤ θ ≤ π

2

(g) −3 ≤ r ≤ 2, θ =
π

4

(h) r ≤ 0, θ =
−π

2

(i) 2π

3
≤ θ ≤ 5π

6

(j) r = 3 sec(θ)



Polar Coordinates (CO4)

Fact 7.4.4 If a polar graph is symmetric about the x-axis, then if the point (r, θ) lies on the
graph, then the point (r,−θ) or (−r, π − θ) also lies on the graph.



Polar Coordinates (CO4)

Fact 7.4.5 If a polar graph is symmetric about the y-axis, then if the point (r, θ) lies on the
graph, then the point (r, π − θ) or (−r,−θ) also lies on the graph.



Polar Coordinates (CO4)

Fact 7.4.6 If a polar graph is rotationally symmetric about the origin, then if the point (r, θ)
lies on the graph, then the point (−r, θ) or (r, π + θ) also lies on the graph.



Polar Coordinates (CO4)

Activity 7.4.7

(a) Find a polar form of the the Cartesian equation x2 + (y − 3)2 = 9.



Polar Coordinates (CO4)

Activity 7.4.8 Find a Cartesian form of each of the given polar equations.

(a) r2 = 4r cos(θ)

(b) r =
4

2 cos(θ)− sin(θ)



Polar Arclength (CO5)

7.5 Polar Arclength (CO5)

Learning Outcomes
• Compute arclengths of curves given in polar coordinates.



Polar Arclength (CO5)

Activity 7.5.1 Recall that the length of a parametric curve is given by

∫ t=b

t=a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

(a) Let x(t) = r cos(θ) and y(t) = r sin(θ) and show that the length of a polar curve
r = f(θ) with α ≤ θ ≤ β is given by

∫ θ=β

θ=α

√
(r)2 +

(
dr

dθ

)2

dθ.

(b) Find an integral computing the arclength of the polar curve defined by r = 3 cos(θ)−2
on π/3 ≤ θ ≤ π.

(c) Find the length of the cardioid r = 1− cos(θ).



Polar Area (CO6)

7.6 Polar Area (CO6)

Learning Outcomes
• Compute areas bounded by curves given in polar coordinates.



Polar Area (CO6)

Fact 7.6.1 The area of the “fan-shaped” region between the pole and r = f(θ) as the angle
θ ranges from α to β is given by ∫ θ=β

θ=α

r2

2
dθ.



Polar Area (CO6)

Activity 7.6.2

(a) Find an integral computing the area of the region defined by 0 ≤ r ≤ − cos(θ)+ 5 and
π/2 ≤ θ ≤ 3π/4.

(b) Find the area enclosed by the cardioid r = 2(1 + cos(θ).

(c) Find the area enclosed by one loop of the 4-petaled rose r = cos(2θ).



Chapter 8

Sequences and Series (SQ)

Learning Outcomes
By the end of this chapter, you should be able to...

1. Define and use explicit and recursive formulas for sequences.

2. Determine if a sequence is convergent, divergent, monotonic, or bounded, and compute
limits of convergent sequences.

3. Compute the first few terms of a telescoping or geometric partial sum sequence, and
find a closed form for this sequence, and compute its limit.

4. Determine if a geometric series converges, and if so, the value it converges to.

5. Use the divergence, alternating series, and integral tests to determine if a series con-
verges or diverges.

6. Use the direct comparison and limit comparison tests to determine if a series converges
or diverges.

7. Use the ratio and root tests to determine if a series converges or diverges.

8. Determine if a series converges absolutely or conditionally.

676



Sequence Formulas (SQ1)

8.1 Sequence Formulas (SQ1)

Learning Outcomes
• Define and use explicit and recursive formulas for sequences.



Sequence Formulas (SQ1)

Activity 8.1.1 Which of the following are sequences?

A. monthly gas bill

B. days in the year

C. how long you wash dishes

D. 1, 1, 2, 3, 5, 8, . . .

E. how much you spend on groceries



Sequence Formulas (SQ1)

Activity 8.1.2 Consider the sequence 1, 2, 4, . . ..

(a) Which of the choices below reasonably continues this sequence of numbers?

A. 7, 12, 24, . . .

B. 7, 11, 16, . . .

C. 8, 16, 32, . . .

D. 1, 2, 4, . . .

E. 7, 12, 20, . . .

(b) Where possible, find a formula that allows us to move from one term to the next one.



Sequence Formulas (SQ1)

Remark 8.1.3 As seen in the previous activity, having too few terms may prevent us from
finding a unique way to continue creating a sequence of numbers. In fact, we need sufficiently
many terms to uniquely continue a sequence of numbers (and how many terms is sufficient
depends on which sequence of numbers you are trying to generate). Sometimes, we do not
want to write out all of the terms needed to allow for this. Therefore, we will want to find
short-hand notation that allows us to do so.



Sequence Formulas (SQ1)

Definition 8.1.4 A sequence is a list of real numbers. Let an denote the nth term in a
sequence. We will use the notation {an}∞n=1 = a1, a2, . . . , an, . . .. A general formula that
indicates how to explicitly find the n-th term of a sequence is the closed form of the
sequence. ♢



Sequence Formulas (SQ1)

Activity 8.1.5 Consider the sequence 1,
1

3
,
1

9
,
1

27
, . . .. Which of the following choices gives

a closed formula for this sequence? Select all that apply.

A.
{(

1

3

)n−1
}∞

n=1

B.
{(

1

3

)n}∞

n=1

C.
{(

1

3

)n−1
}∞

n=2

D.
{(

1

3

)n+1
}∞

n=0

E.
{(

1

3

)n}∞

n=0



Sequence Formulas (SQ1)

Activity 8.1.6 Let an be the nth term in the sequence
{
n+ 1

n

}∞

n=1

. Which of the following

terms corresponds to the 27th term of this sequence?

A. 27

26

B. 26

27

C. 27

28

D. 28

27

E. 29

28



Sequence Formulas (SQ1)

Activity 8.1.7 Let an be the nth term in the sequence
{
n+ 1

n

}∞

n=2

. Which of the following

terms corresponds to the 27th term of this sequence?

A. 27

26

B. 26

27

C. 27

28

D. 28

27

E. 29

28



Sequence Formulas (SQ1)

Activity 8.1.8 Let an be the nth term in the sequence 1,
1

2
,
1

3
,
1

4
, . . .. Identify the 81st term

of this sequence.

A. 1

79

B. 1

80

C. 1

81

D. 1

82

E. 1

83



Sequence Formulas (SQ1)

Activity 8.1.9 Find a closed form for the sequence 0, 3, 8, 15, 24, . . ..



Sequence Formulas (SQ1)

Activity 8.1.10 Find a closed form for the sequence 12

1
,
16

2
,
20

3
,
24

4
,
28

5
, . . ..



Sequence Formulas (SQ1)

Activity 8.1.11 Let an be the nth term in the sequence 1, 1, 2, 3, 5, 8, . . .. Find a formula
for an.



Sequence Formulas (SQ1)

Definition 8.1.12 A sequence is recursive if the terms are defined as a function of previous
terms (with the necessary initial terms provided). ♢



Sequence Formulas (SQ1)

Activity 8.1.13 Consider the sequence defined by a1 = 6 and ak+1 = 4ak − 7 for k ≥ 1.
What are the first four terms?



Sequence Formulas (SQ1)

Activity 8.1.14 Consider the sequence 2, 7, 22, 67, 202, . . .. Which of the following offers
the best recursive formula for this sequence?

A. an+1 = 3an + 1

B. a1 = 2, ak = 3ak−1 + 1 for k > 1

C. a1 = 2, a2 = 7, ak = 3ak−1 + 1 for k > 2



Sequence Formulas (SQ1)

Activity 8.1.15 Once more, consider the sequence 1, 1, 2, 3, 5, 8, . . . from Activity 8.1.11.
Suppose a1 = 1 and a2 = 1. Give a recursive formula for an for all n ≥ 3.



Sequence Formulas (SQ1)

Activity 8.1.16 Give a recursive formula that generates the sequence 1, 2, 4, 8, 16, 32, . . ..



Sequence Formulas (SQ1)

Activity 8.1.17

(a) Find the first 5 terms of the following sequence:

• an = 3 · 2n.,

(b) Find a closed form for the following sequence:

• 4, 5, 8, 13, 20, . . .,

(c) Find a recursive form for the following sequence:

• −3, 2, 7, 12, 17, . . .,



Sequence Formulas (SQ1)

Activity 8.1.18

(a) Find the first 5 terms of the following sequence:

• an = 5n+ 4.,

(b) Find a closed form for the following sequence:

• 0, 1, 4, 9, 16, . . .,

(c) Find a recursive form for the following sequence:

• 2,−1,
1

2
,−1

4
,
1

8
, . . .,



Sequence Properties and Limits (SQ2)

8.2 Sequence Properties and Limits (SQ2)

Learning Outcomes
• Determine if a sequence is convergent, divergent, monotonic, or bounded, and compute

limits of convergent sequences.



Sequence Properties and Limits (SQ2)

Activity 8.2.1 We will consider the function f(x) =
4x+ 8

x
.

(a) Compute the limit lim
x→∞

4x+ 8

x
.

A. 0

B. 8

C. 1

D. 4

(b) Determine on which intervals f(x) is increasing and/or decreasing. (Hint: compute
f ′(x) first.)

(c) Which statement best describes f(x) for x > 0?

A. f(x) is bounded above by 4
B. f(x) is bounded below by 4
C. f(x) is bounded above and below by

4
D. f(x) is not bounded above
E. f(x) is not bounded below



Sequence Properties and Limits (SQ2)

Definition 8.2.2 Given a sequence {xn}:

• {xn} is monotonically increasing if xn+1 > xn for every choice of n.

• {xn} is monotonically non-decreasing if xn+1 ≥ xn for every choice of n.

• {xn} is monotonically decreasing if xn+1 < xn for every choice of n.

• {xn} is monotonically non-increasing if xn+1 ≤ xn for every choice of n.

All of these sequences would be monotonic. ♢



Sequence Properties and Limits (SQ2)

Activity 8.2.3 Consider the sequence
{
(−1)n

n

}∞

n=1

.

(a) Compute xn+1 − xn.

(b) Which of the following is true about xn+1 − xn? There can be more or less than one
answer.

A. xn+1 − xn > 0 for every choice of n.
B. xn+1 − xn ≥ 0 for every choice of n.

C. xn+1 − xn < 0 for every choice of n.
D. xn+1 − xn ≤ 0 for every choice of n.

(c) Which of the following (if any) describe
{
(−1)n

n

}∞

n=1

?

A. Monotonically increasing.
B. Monotonically non-decreasing.

C. Monotonically decreasing.
D. Monotonically non-increasing.



Sequence Properties and Limits (SQ2)

Activity 8.2.4 Consider the sequence
{
n2 + 1

n

}∞

n=1

.

(a) Compute xn+1 − xn.

(b) Which of the following is true about xn+1 − xn? There can be more or less than one
answer.

A. xn+1 − xn > 0 for every choice of n.
B. xn+1 − xn ≥ 0 for every choice of n.

C. xn+1 − xn < 0 for every choice of n.
D. xn+1 − xn ≤ 0 for every choice of n.

(c) Which of the following (if any) describe
{
n2 + 1

n

}∞

n=1

?

A. Monotonically increasing.
B. Monotonically non-decreasing.

C. Monotonically decreasing.
D. Monotonically non-increasing.



Sequence Properties and Limits (SQ2)

Activity 8.2.5 Consider the sequence
{
n+ 1

n

}∞

n=1

.

(a) Compute xn+1 − xn.

(b) Which of the following is true about xn+1 − xn? There can be more or less than one
answer.

A. xn+1 − xn > 0 for every choice of n.
B. xn+1 − xn ≥ 0 for every choice of n.

C. xn+1 − xn < 0 for every choice of n.
D. xn+1 − xn ≤ 0 for every choice of n.

(c) Which of the following (if any) describe
{
n+ 1

n

}∞

n=1

?

A. Monotonically increasing.
B. Monotonically non-decreasing.

C. Monotonically decreasing.
D. Monotonically non-increasing.



Sequence Properties and Limits (SQ2)

Activity 8.2.6 Consider the sequence
{

2

3n

}∞

n=0

.

(a) Compute xn+1 − xn.

(b) Which of the following is true about xn+1 − xn? There can be more or less than one
answer.

A. xn+1 − xn > 0 for every choice of n.
B. xn+1 − xn ≥ 0 for every choice of n.

C. xn+1 − xn < 0 for every choice of n.
D. xn+1 − xn ≤ 0 for every choice of n.

(c) Which of the following (if any) describe
{

2

3n

}∞

n=0

?

A. Monotonically increasing.
B. Monotonically non-decreasing.

C. Monotonically decreasing.
D. Monotonically non-increasing.



Sequence Properties and Limits (SQ2)

Definition 8.2.7 A sequence {xn} is bounded if there are real numbers bu, bℓ such that

bℓ ≤ xn ≤ bu

for every n. ♢



Sequence Properties and Limits (SQ2)

Activity 8.2.8 Consider the sequence
{
(−1)n

n

}∞

n=1

from Activity 8.2.3.

(a) Is there a bu such that xn ≤ bu for every n? If so, what would be one such bu?

(b) Is there a bℓ such that bℓ ≤ xn for every n? If so, what would be one such bℓ?

(c) Is
{
(−1)n

n

}∞

n=1

bounded?



Sequence Properties and Limits (SQ2)

Activity 8.2.9 Consider the sequence
{
n2 + 1

n

}∞

n=1

from Activity 8.2.4.

(a) Is there a bu such that xn ≤ bu for every n? If so, what would be one such bu?

(b) Is there a bℓ such that bℓ ≤ xn for every n? If so, what would be one such bℓ?

(c) Is
{
n2 + 1

n

}∞

n=1

bounded?



Sequence Properties and Limits (SQ2)

Activity 8.2.10 Consider the sequence
{
n+ 1

n

}∞

n=1

from Activity 8.2.5.

(a) Is there a bu such that xn ≤ bu for every n? If so, what would be one such bu?

(b) Is there a bℓ such that bℓ ≤ xn for every n? If so, what would be one such bℓ?

(c) Is
{
n+ 1

n

}∞

n=1

bounded?



Sequence Properties and Limits (SQ2)

Activity 8.2.11 Consider the sequence
{

2

3n

}∞

n=1

from Activity 8.2.6.

(a) Is there a bu such that xn ≤ bu for every n? If so, what would be one such bu?

(b) Is there a bℓ such that bℓ ≤ xn for every n? If so, what would be one such bℓ?

(c) Is
{

2

3n

}∞

n=1

bounded?



Sequence Properties and Limits (SQ2)

Definition 8.2.12 Given a sequence {xn}, we say xn has limit L, denoted

lim
n→∞

xn = L

if we can make xn as close to L as we like by making n sufficiently large. If such an L exists,
we say {xn} converges to L. If no such L exists, we say {xn} does not converge. ♢



Sequence Properties and Limits (SQ2)

Activity 8.2.13

(a) For each of the following, determine if the sequence converges.

A.
{
(−1)n

n

}∞

n=1

.

B.
{
n2 + 1

n

}∞

n=1

.

C.
{
n+ 1

n

}∞

n=1

.

D.
{

2

3n

}∞

n=0

.

(b) Where possible, find the limit of the sequence.



Sequence Properties and Limits (SQ2)

Activity 8.2.14

(a) Determine to what value
{

4n

n+ 1

}∞

n=0

converges.

(b) Which of the following ia most likely true about
{
4n(−1)n

n+ 1

}∞

n=0

?

A.
{
4n(−1)n

n+ 1

}∞

n=0

converges to 4.

B.
{
4n(−1)n

n+ 1

}∞

n=0

converges to 0.

C.
{
4n(−1)n

n+ 1

}∞

n=0

converges to -4.

D.
{
4n(−1)n

n+ 1

}∞

n=0

does not converge.



Sequence Properties and Limits (SQ2)

Activity 8.2.15 For each of the following sequences, determine which of the properties:
monotonic, bounded and convergent, the sequence satisfies. If a sequence is convergent,

determine to what it converges. {3n}∞n=0 .

{
n3

3n

}∞

n=0

.

{
n

n+ 3

}∞

n=1

.

{
(−1)n

n+ 3

}∞

n=1

.



Sequence Properties and Limits (SQ2)

Fact 8.2.16 If a sequence is monotonic and bounded, then it is convergent.



Partial Sum Sequence (SQ3)

8.3 Partial Sum Sequence (SQ3)

Learning Outcomes
• Compute the first few terms of a telescoping or geometric partial sum sequence, and

find a closed form for this sequence, and compute its limit.



Partial Sum Sequence (SQ3)

Activity 8.3.1 Consider the sequence {an}∞n=0 =

{
1

2n

}∞

n=0

.

(a) Find the first 5 terms of this sequence.

(b) Compute the following:

(a) a0.

(b) a0 + a1.

(c) a0 + a1 + a2.

(d) a0 + a1 + a2 + a3.

(e) a0 + a1 + a2 + a3 + a4.



Partial Sum Sequence (SQ3)

Activity 8.3.2 Consider the sequence {an}∞n=1 =

{
1

n

}∞

n=1

.

(a) Find the first 5 terms of this sequence.

(b) Compute the following:

(a) a1.

(b) a1 + a2.

(c) a1 + a2 + a3.

(d) a1 + a2 + a3 + a4.

(e) a1 + a2 + a3 + a4 + a5.



Partial Sum Sequence (SQ3)

Definition 8.3.3 Given a sequence {an}∞n=0 define the kth partial sum for this sequence
to be

Ak =
k∑

i=0

ai = a0 + a1 + a2 + · · ·+ ak.

Note that {An}∞n=0 = A0, A1, A2, . . . is itself a sequence called the partial sum sequence.
More generally, partial sums may be defined for any starting index. Given {an}∞n=N , let

Ak =
k∑

i=N

ai = aN + aN+1 + aN+2 + · · ·+ ak.

♢



Partial Sum Sequence (SQ3)

Activity 8.3.4

(a) A0

(b) A1

(c) A2

(d) A3

(e) A100



Partial Sum Sequence (SQ3)

Activity 8.3.5 Consider the sequence an = 2
3n
. What is the best way to find the 100th

partial sum A100?

A. Sum the first 101 terms of the sequence
{an}.

B. Find a closed form for the partial sum
sequence {An}.



Partial Sum Sequence (SQ3)

Activity 8.3.6 Expand the following polynomial products, and then reduce to as few sum-
mands as possible.

1. (1− x)(1 + x+ x2).

2. (1− x)(1 + x+ x2 + x3).

3. (1− x)(1 + x+ x2 + x3 + x4).

4. (1− x)(1 + x+ x2 + · · ·+ xn), where n is any nonnegative integer.



Partial Sum Sequence (SQ3)

Activity 8.3.7 Suppose S5 = 1 +
1

2
+

1

4
+

1

8
+

1

16
+

1

32
. Without actually computing this

sum, which of the following is equal to
(
1− 1

2

)
S5?

A. 1

2
+

1

4
+

1

8
+

1

16
+

1

32
− 1

64
.

B. 1− 1

64
.

C. 1− 1

2
− 1

4
− 1

8
− 1

16
− 1

32
.



Partial Sum Sequence (SQ3)

Activity 8.3.8 Recall from Activity 8.3.4 that A100 = 2 +
2

3
+

2

32
+

2

33
+

2

34
+ · · ·+ 2

3100
=

2

(
1 +

1

3
+

1

32
+

1

33
+

1

34
+ · · ·+ 1

3100

)
.

(a) Which of the following is equal to
(
1− 1

3

)
A100?

A. 1− 1

3101
.

B. 1− 1

3100
.

C. 2

(
1− 1

3101

)
.

D. 2

(
1− 1

3100

)
.

(b) Based on your previous choice, write out an expression for A100.



Partial Sum Sequence (SQ3)

Activity 8.3.9 Suppose that {bn}∞n=0 = {(−2)n}∞n=0 = {1,−2, 4,−8, . . .}. Let Bn =
n∑

i=0

bi

be the nth partial sum of {bn}.

(a) Find simple expressions for the following:

(a) (1− (−2))B10.
(b) (1− (−2))B30.
(c) (1− (−2))Bn. Choose from the following:

A. 1 + (−2)n.
B. 1− (−2)n.
C. 1 + (−2)n+1.

D. 1− (−2)n+1.
E. 1− 2n.

(b) Based on your previous answers, solve for the following:

(a) B10.
(b) B30.
(c) Bn. Choose from the following:

A. 1− (−2)n+1

1− (−2)

B. 1− (−2)n+1

1− 2

C. 1− (−2)n+1

1 + (−2)

D. 1− (−2)n

1− 2

E. 1− (−2)n

1− (−2)



Partial Sum Sequence (SQ3)

Activity 8.3.10 Consider the following sequences:

1. {an}∞n=0 =

{(
−2

3

)n}∞

n=0

.

2. {bn}∞n=0 = {2 · (−1)n}∞n=0.

3. {cn}∞n=0 = {−3 · (1.2)n}∞n=0.

(a) Find the closed form for the nth partial sum for the geometric sequence An =
n∑

i=0

ai =

n∑
i=0

(
−2

3

)n

.

A. 3

5

(
1−

(
−2

3

)n+1
)

.

B. 5

3

(
1−

(
−2

3

)n+1
)

.

C. 5

3

(
1 +

2

3

(
2

3

)n)
.

D. 3

5

(
1 +

2

3

(
2

3

)n)
.

E. 1−
(
−2

3

)n+1

.

(b) Find the closed form for the nth partial sum for the geometric sequence Bn =
n∑

i=0

bi =

n∑
i=0

2 · (−1)n.

A. 2n+1.
B. 1− (−1)n+1.
C. 1 + (−1)n.

D. 2(1 + (−1)n).

E. 2(1− (−1)n+1).

(c) Find the closed form for the nth partial sum for the geometric sequence Cn =
n∑

i=0

ci =

n∑
i=0

−3 · (1.2)n.



Partial Sum Sequence (SQ3)

Activity 8.3.11 Given the closed forms you found in Activity 8.3.10, which of the following
limits are defined? If defined, what is the limit?

A. lim
n→∞

An.

B. lim
n→∞

Bn.

C. lim
n→∞

Cn.



Partial Sum Sequence (SQ3)

Definition 8.3.12 Given a sequence an, we define the limit of the series
∞∑
n=k

an := lim
n→∞

An

where An =
n∑

i=k

ai. We call
∞∑
n=k

an an infinite series. ♢



Partial Sum Sequence (SQ3)

Activity 8.3.13 Which of the following series are infinite?

A.
∞∑
n=0

3(0.8)n.

B.
∞∑
n=0

2

(
5

4

)n

.

C.
∞∑
n=0

(
5

6

)n

.

D.
∞∑
n=0

1

2
(81)n.

E.
∞∑
n=0

10

(
−1

5

)n

.



Partial Sum Sequence (SQ3)

Activity 8.3.14 Let {an}∞n=1 =

{
1

n
− 1

n+ 1

}
= 1− 1

2
,
1

2
− 1

3
,
1

3
− 1

4
, . . .. Let An =

n∑
i=1

ai =

n∑
i=1

(
1

i
− 1

i+ 1

)
.

Which of the following is the best strategy for evaluating A4 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+(

1

3
− 1

4

)
+

(
1

4
− 1

5

)
?

A. Compute A4 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
=

1

2
+

1

6
+

1

12
+

1

20
, then

evaluate the sum.

B. Rewrite A4 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1 +

(
−1

2
+

1

2

)
+(

−1

3
+

1

3

)
+

(
−1

4
+

1

4

)
− 1

5
, then simplify.



Partial Sum Sequence (SQ3)

Activity 8.3.15 Recall from Activity 8.3.14 that {an}∞n=1 =

{
1

n
− 1

n+ 1

}
and An =

n∑
i=1

ai =
n∑

i=1

(
1

i
− 1

i+ 1

)
.

Compute the following partial sums:

1. A3.

2. A10.

3. A100.



Partial Sum Sequence (SQ3)

Activity 8.3.16 Recall from Activity 8.3.14 that {an}∞n=1 =

{
1

n
− 1

n+ 1

}
and An =

n∑
i=1

ai =
n∑

i=1

(
1

i
− 1

i+ 1

)
.

Which of the following is equal to An?

A. n− 1
n+1

.

B. 1− 1
n
.

C. 1− 1
n+1

.

D. 1− 1
i
.

E. 1− 1
i+1

.



Partial Sum Sequence (SQ3)

Definition 8.3.17 Given a sequence {xn}∞1 and a sequence of the form {sn}∞1 := {xn −

xn+1}∞1 we call the series Sn =
n∑

i=1

si =
n∑

i=1

(xi − xi+1) to be a telescoping series. ♢



Partial Sum Sequence (SQ3)

Activity 8.3.18 Given a telescoping series Sn =
n∑

i=1

si =
n∑

i=1

(xi − xi+1), find:

1. S2.

2. S10.

3. Choose Sn from the following options:

A. x1 − xn

B. x1 − xn+1

C. x1 − xn−1

D. x1 − xn + 1

E. x1 − xn − 1



Partial Sum Sequence (SQ3)

Activity 8.3.19 For each of the following telescoping series, find the closed form for the nth
partial sum.

1. Sn =
n∑

i=1

(2−i − (2−i−1)).

2. Sn =
n∑

i=1

(i2 − (i+ 1)2).

3. Sn =
n∑

i=1

(
1

2i+ 1
− 1

2i+ 3

)
.



Partial Sum Sequence (SQ3)

Activity 8.3.20 Given the closed forms you found in Activity 8.3.19, determine which of
the following telescoping series converge. If so, to what value does it converge?

A.
∞∑
i=1

(2−i − (2−i−1)).

B.
∞∑
i=1

(i2 − (i+ 1)2).

C.
∞∑
i=1

(
1

2i+ 1
− 1

2i+ 3

)
.



Partial Sum Sequence (SQ3)

Activity 8.3.21 Consider the partial sum sequence An = (−2) +

(
2

3

)
+

(
−2

9

)
+ · · · +(

−2 ·
(
−1

3

)n)
.

(a) Find a closed form for An.

(b) Does {An} converge? If so, to what value?



Partial Sum Sequence (SQ3)

Activity 8.3.22 Consider the partial sum sequence Bn =
n∑

i=1

(
1

5 i+ 2
− 1

5 i+ 7

)
.

(a) Find a closed form for Bn.

(b) Does {Bn} converge? If so, to what value?



Geometric Series (SQ4)

8.4 Geometric Series (SQ4)

Learning Outcomes
• Determine if a geometric series converges, and if so, the value it converges to.



Geometric Series (SQ4)

Activity 8.4.1 Recall from Section 8.3 that for any real numbers a, r and Sn =
n∑

i=0

ari that:

Sn =
n∑

i=0

ari = a+ ar + ar2 + · · · arn

(1− r)Sn = (1− r)
n∑

i=0

ari = (1− r)(a+ ar + ar2 + · · · arn)

(1− r)Sn = (1− r)
n∑

i=0

ari = a− arn+1

Sn = a
1− rn+1

1− r
.

(a) Using Definition 8.3.12, for which values of r does
∞∑
n=0

arn converges?

A. |r| > 1.

B. |r| = 1.

C. |r| < 1.
D. The series converges for every value

of r.

(b) Where possible, determine what value
∞∑
n=0

arn converges to.



Geometric Series (SQ4)

Fact 8.4.2 Geometric series are sums of the form
∞∑
n=0

arn = a+ ar + ar2 + ar3 + . . . ,

where a and r are real numbers. When |r| < 1 this series converges to the value a

1− r
.

Otherwise, the geometric series diverges.



Geometric Series (SQ4)

Activity 8.4.3 Consider the infinite series

5 +
3

2
+

3

4
+

3

8
+ · · · .

(a) Complete the following rearrangement of terms.

5 +
3

2
+

3

4
+

3

8
+ · · · = ? +

(
3 +

3

2
+

3

4
+

3

8
+ · · ·

)
= ? +

∞∑
n=0

? ·
(
1

?

)n

(b) Since | 1
?
| < 1, this series converges. Use the formula

∑∞
n=0 ar

n = a
1−r

to find the value
of this series.

A. 7

2

B. 13

2

C. 8

D. 10



Geometric Series (SQ4)

Activity 8.4.4 Complete the following calculation, noting |0.6| < 1:

∞∑
n=2

2(0.6)n =

(
∞∑
n=0

2(0.6)n

)
− ? − ?

=

(
?

1− ?

)
− ? − ?

What does this simplify to?

A. 1.1

B. 1.4

C. 1.8

D. 2.1



Geometric Series (SQ4)

Observation 8.4.5 Given a series that appears to be mostly geometric such as

3 + (1.1)3 + (1.1)4 + · · · (1.1)n + · · ·

we can always rewrite it as the sum of a standard geometric series with some finite modifi-
cation, in this case:

−0.31 +
∞∑
n=0

(1.1)n

Thus the original series converges if and only if
∞∑
n=0

(1.1)n converges.

When the series diverges as in this example, then the reason why (|1.1| ≥ 1) can be seen
without any modification of the original series.



Geometric Series (SQ4)

Activity 8.4.6 For each of the following modified geometric series, determine without rewrit-
ing if they converge or diverge.

(a) −7 +

(
−3

7

)2

+

(
−3

7

)3

+ · · ·.

(b) −6 +
(
5
4

)3
+
(
5
4

)4
+ · · ·.

(c) 4 +
∞∑
n=4

(
2

3

)n

.

(d) 8− 1 + 1− 1 + 1− 1 + · · ·.



Geometric Series (SQ4)

Activity 8.4.7 Find the value of each of the following convergent series.

(a) −1 +
∑∞

n=1 2 ·
(
1
2

)n.

(b) −7 +

(
−3

7

)2

+

(
−3

7

)3

+ · · ·.

(c) 4 +
∞∑
n=4

(
2

3

)n

.



Basic Convergence Tests (SQ5)

8.5 Basic Convergence Tests (SQ5)

Learning Outcomes
• Use the divergence, alternating series, and integral tests to determine if a series con-

verges or diverges.



Basic Convergence Tests (SQ5)

Activity 8.5.1 Which of the following series seem(s) to diverge? It might be helpful to
write out the first several terms.

A.
∞∑
n=0

n2.

B.
∞∑
n=1

n+ 1

n
.

C.
∞∑
n=0

(−1)n.

D.
∞∑
n=1

1

n
.

E.
∞∑
n=1

1

n2
.



Basic Convergence Tests (SQ5)

Fact 8.5.2 If the series
∑

an is convergent, then lim
n→∞

an = 0.



Basic Convergence Tests (SQ5)

Fact 8.5.3 The Divergence (nth term) Test. If the lim
n→∞

an ̸= 0, then
∑

an diverges.



Basic Convergence Tests (SQ5)

Activity 8.5.4 Which of the series from Activity 8.5.1 diverge by Fact 8.5.3?



Basic Convergence Tests (SQ5)

Fact 8.5.5 If an > 0 for all n, then
∑

an is convergent if and only if the sequence of partial
sums is bounded from above.



Basic Convergence Tests (SQ5)

Activity 8.5.6 Consider the so-called harmonic series,
∞∑
n=1

1

n
, and let Sn be its nth partial

sum.

(a) Determine which of the following inequalities hold(s).

A. 1

3
+

1

4
<

1

2
.

B. 1

3
+

1

4
>

1

2
.

C. S4 ≥ S2 +
1

2
.

D. S4 ≤ S2 +
1

2
.

E. S4 = S2 +
1

2
.

(b) Determine which of the following inequalities hold(s).

A. 1

2
<

1

5
+

1

6
+

1

7
+

1

8
.

B. 1

2
>

1

5
+

1

6
+

1

7
+

1

8
.

C. S8 = S4 +
1

2
.

D. S8 ≥ S4 +
1

2
.

E. S8 ≤ S4 +
1

2
.



Basic Convergence Tests (SQ5)

Activity 8.5.7 In Activity 8.5.6, we found that S4 ≥ S2 +
1

2
and S8 ≥ S4 +

1

2
. Based on

these inequalities, which statement seems most likely to hold?

A. The harmonic series converges. B. The harmonic series diverges.



Basic Convergence Tests (SQ5)

Activity 8.5.8 Consider the series
∞∑
n=1

1

n2
.

(a) We want to compare this series to an improper integral. Which of the following is the
best candidate?

A.
∫ ∞

1

x2 dx.

B.
∫ ∞

1

1

x3
dx.

C.
∫ ∞

1

1

x2
dx.

D.
∫ ∞

1

1

x
dx.

E.
∫ ∞

1

x dx.

(b) Select the true statements below.

A. The sum
∞∑
n=1

1

n2
corresponds to

approximating the integral chosen
above using left Riemann sums where
∆x = 1.

B. The sum
∞∑
n=1

1

n2
corresponds to

approximating the integral chosen
above using right Riemann sums
where ∆x = 1.

C. The sum
∞∑
n=2

1

n2
corresponds to

approximating the integral chosen
above using left Riemann sums where
∆x = 1.

D. The sum
∞∑
n=2

1

n2
corresponds to

approximating the integral chosen
above using right Riemann sums
where ∆x = 1.

(c) Using the Riemann sum interpretation of the series, identify which of the following
inequalities holds.

A.
∞∑
n=1

1

n2
≤
∫ ∞

1

1

x2
dx.

B.
∞∑
n=1

1

n2
≥
∫ ∞

1

1

x2
dx.

C.
∞∑
n=2

1

n2
≥
∫ ∞

1

1

x2
dx.

D.
∞∑
n=2

1

n2
≤
∫ ∞

1

1

x2
dx.

(d) What can we say about the improper integral
∫ ∞

1

1

x2
dx?

A. This improper integral converges. B. This improper integral diverges.

(e) What do you think is true about the series
∞∑
n=1

1

n2
?

A. The series converges. B. The series diverges.
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Fact 8.5.9 The Integral Test. Let {an} be a sequence of positive numbers. If f(x) is
continuous, positive, and decreasing, and there is some positive integer N such that f(n) = an

for all n ≥ N , then
∞∑

n=N

an and
∫ ∞

N

f(x) dx both converge or both diverge.
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Activity 8.5.10 Consider the p-series
∞∑
n=1

1

np
.

(a) Recall that the harmonic series diverges. What value of p corresponds to the harmonic
series?

A. p = −1.
B. p = 1.
C. p = −2.

D. p = 2.

E. p = 0.

(b) From Fact 8.5.9, what can we conclude about the p-series with p = 2?

A. There is not enough information to
draw a conclusion.

B. This series converges.
C. This series diverges.
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Fact 8.5.11 The p-Test. The series
∞∑
n=1

1

np
converges for p > 1, and diverges otherwise.
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Activity 8.5.12 Consider the series
∞∑
n=1

1

n2 + 1
.

(a) If we aim to use the integral test, what is an appropriate choice for f(x)?

A. 1

x2
.

B. x2 + 1.
C. 1

x2 + 1
.

D. x2.

E. 1

x
.

(b) Does the series converge or diverge by Fact 8.5.9?
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Activity 8.5.13 Prove Fact 8.5.11.
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Activity 8.5.14 Which of the following statements seem(s) most likely to be true?

A.
∞∑
n=1

(−1)n
1

n
diverges.

B.
∞∑
n=1

(−1)n
1

n
converges.

C.
∞∑
n=1

(−1)n
1

n2
converges.

D.
∞∑
n=1

(−1)n
1

n2
diverges.
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Fact 8.5.15 The Alternating Series Test (Leibniz’s Theorem). The series∑
(−1)n+1un converges if all of the following conditions are satisfied:

1. un is always positive,

2. there is an integer N such that un ≥ un+1 for all n ≥ N , and

3. lim
n→∞

un = 0.
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Activity 8.5.16 What conclusions can you now make?

A.
∞∑
n=1

(−1)n
1

n
diverges.

B.
∞∑
n=1

(−1)n
1

n
converges.

C.
∞∑
n=1

(−1)n
1

n2
converges.

D.
∞∑
n=1

(−1)n
1

n2
diverges.
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Activity 8.5.17 For each of the following series, use the Divergence, Alternating Summation
or Integral test to determine if the series converges.

(a)
∞∑
n=1

2 (n2 + 2)

n2
.

(b)
∞∑
n=1

1

n4
.

(c)
∞∑
n=1

3 (−1)n

4n
.
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Fact 8.5.18 The Alternating Series Estimation Theorem. If the alternating series∑
an =

∑
(−1)n+1un converges to L and has nth partial sum Sn, then for n ≥ N (as in

the alternating series test):

1. |L− Sn| is less than |an+1|, and

2. (L− Sn) has the same sign as an+1.
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Activity 8.5.19 Consider the so-called alternating harmonic series,
∞∑
n=1

(−1)n+1

n
.

(a) Use the alternating series test to determine if the series converges.

(b) If so, estimate the series using the first 3 terms.
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8.6 Comparison Tests (SQ6)

Learning Outcomes
• Use the direct comparison and limit comparison tests to determine if a series converges

or diverges.
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Activity 8.6.1 Let {an}∞n=1 be a sequence, with infinite series
∞∑
n=1

an = a1 + a2 + · · ·.

Suppose {bn}∞n=1 is a sequence where each bn = 3an, whith infinite series
∞∑
n=1

bn =
∞∑
n=1

3an =

3a1 + 3a2 + · · ·.

(a) If
∞∑
n=1

an = 5 what can be said about
∞∑
n=1

bn?

A.
∞∑
n=1

bn converges but the value cannot

be determined.

B.
∞∑
n=1

bn converges to 3 · 5 = 15.

C.
∞∑
n=1

bn converges to some value other

than 15.

D.
∞∑
n=1

bn diverges.

E. It cannot be determined whether
∞∑
n=1

bn converges or diverges.

(b) If
∞∑
n=1

an diverges, what can be said about
∞∑
n=1

bn?

A.
∞∑
n=1

bn converges but the value cannot

be determined.

B.
∞∑
n=1

bn converges and the value can be

determined.

C.
∞∑
n=1

bn diverges.

D. It cannot be determined whether
∞∑
n=1

bn converges or diverges.
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Activity 8.6.2 Using Fact 8.4.2, we know the geometric series
∞∑
n=0

1

2n
= 1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · = 1

1− 1
2

= 2.

(a) What can we say about the series

3 +
3

2
+

3

4
+

3

8
+ · · ·+ 3

2n
+ · · ·?

A. 3 +
3

2
+

3

4
+

3

8
+ · · ·+ 3

2n
+ · · · converges to 3 · 2 = 6.

B. 3 +
3

2
+

3

4
+

3

8
+ · · ·+ 3

2n
+ · · · converges to some value other than 6.

C. 3 +
3

2
+

3

4
+

3

8
+ · · ·+ 3

2n
+ · · · diverges.

(b) What do you think we can say about the series

3.1

2
+

3.01

4
+

3.001

8
+ · · ·+ 3 + (0.1)n

2n
+ · · ·?

A. 3 +
3.1

2
+

3.01

4
+

3.001

8
+ · · ·+ 3 + (0.1)n

2n
+ · · · converges to 3 · 2 = 6.

B. 3+
3.1

2
+

3.01

4
+

3.001

8
+ · · ·+ 3 + (0.1)n

2n
+ · · · converges to some value other than

6.

C. 3 +
3.1

2
+

3.01

4
+

3.001

8
+ · · ·+ 3 + (0.1)n

2n
+ · · · diverges.
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Activity 8.6.3 From Fact 8.4.2, we know

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
+ · · ·

diverges.

(a) What can we say about the series

5 +
5

2
+

5

3
+

5

4
+ · · ·+ 5

n
+ · · ·?

A. 5 +
5

2
+

5

3
+

5

4
+ · · ·+ 5

n
+ · · · converges to a known value we can compute.

B. 5 +
5

2
+

5

3
+

5

4
+ · · ·+ 5

n
+ · · · converges to some unknown value.

C. 5 +
5

2
+

5

3
+

5

4
+ · · ·+ 5

n
+ · · · diverges.

(b) What do you think we can say about the series

4.9 +
4.99

2
+

4.999

3
+

4.9999

4
+ · · ·+ 5− (0.1)n

n
+ · · ·?

A. 4.9 +
4.99

2
+

4.999

3
+

4.9999

4
+ · · ·+ 5− (0.1)n

n
+ · · · converges to a known value

we can compute.

B. 4.9 +
4.99

2
+

4.999

3
+

4.9999

4
+ · · ·+ 5− (0.1)n

n
+ · · · converges to some unknown

value.

C. 4.9 +
4.99

2
+

4.999

3
+

4.9999

4
+ · · ·+ 5− (0.1)n

n
+ · · · diverges.
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Fact 8.6.4 The Limit Comparison Test. Let
∑

an and
∑

bn be series with positive
terms. If

lim
n→∞

bn
an

= c

for some positive (finite) constant c, then
∑

an and
∑

bn either both converge or both
diverge.
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Activity 8.6.5 Recall that
∞∑
n=1

1

2n

converges.

(a) Let bn = 1
n
. Compute lim

n→∞

1
n
1
2n

.

A. −∞.
B. 0.
C. 1

2
.

D. 1.
E. ∞.

(b) Does
∞∑
n=1

1

n
converge or diverge?

(c) Let bn =
1

n2
. Compute lim

n→∞

1
n2

1
2n

.

A. ∞.
B. ln(2).
C. 1.

D. 1

2
.

E. −∞.

(d) Does
∞∑
n=1

1

n2
converge or diverge?

(e) Let
∑

an and
∑

bn be series with positive terms. If

lim
n→∞

bn
an

diverges, can we conclude that
∑

bn converges or diverges?
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Activity 8.6.6 We wish to determine if
∞∑
n=1

1

4n − 1
converges or diverges using Fact 8.6.5.

(a) Compute

lim
n→∞

1
4n−1
1
4n

.

(b) Does the geometric series
∞∑
n=1

1

4n
converge or diverge by Fact 8.4.2?

(c) Does
∞∑
n=1

1

4n − 1
converge or diverge?
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Activity 8.6.7 We wish to determine if
∞∑
n=2

2√
n+ 3

converges or diverges using Fact 8.6.5.

(a) To which of the following should we compare {an} =

{
2√
n+ 3

}
?

A.
{
1

n

}
.

B.
{

1√
n

}
.

C.
{

1

n2

}
.

D.
{

1

2n

}
.

(b) Compute lim
n→∞

bn
an

.

(c) Compute lim
n→∞

an
bn

.

(d) What is true about lim
n→∞

bn
an

and lim
n→∞

an
bn

?

A. Their values are reciprocals.
B. Their values negative reciprocals.
C. They are both positive finite con-

stants.

D. Only one value is a finite positive con-
stant.

E. One value is 0 and the other value is
infinite.

(e) Does the series
∞∑
n=2

1√
n

converge or diverge?

(f) Using your chosen sequence and Fact 8.6.5, does
∞∑
n=2

2√
n+ 3

converge or diverge?
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Activity 8.6.8 We wish to determine if
∞∑
n=1

3

n2 + 8n+ 5
converges or diverges using

Fact 8.6.5.

(a) To which of the following should we compare {xn} =

{
3

n2 + 8n+ 5

}
?

A.
{
1

n

}
.

B.
{

1√
n

}
.

C.
{

1

n2

}
.

D.
{

1

2n

}
.

(b) Using your chosen sequence and Fact 8.6.5, does 3

n2 + 8n+ 5
converge or diverge?
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Activity 8.6.9 Use Fact 8.6.5 to determine if the series
∞∑
n=5

2

4n
converges or diverges.
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Activity 8.6.10 Consider sequences {an}, {bn} where an ≥ bn ≥ 0.

x

y
a0 b0

a1

b1
a2

b2 · · ·

Figure 116 Plots of {an}, {bn}

(a) Suppose that
∞∑
n=0

an converges. What could be said about {bn}?

A.
∞∑
n=0

bn converges.

B.
∞∑
n=0

bn diverges.

C. Whether or not
∞∑
n=0

bn converges or

diverges cannot be determined with
this information.

(b) Suppose that
∞∑
n=1

an =
∞∑
n=1

1

n+ 1
which diverges. Which of the following statements

are true?

A. 0 ≤ 1

2n2
≤ 1

n+ 1
for each n ≥ 1

and
∞∑
n=1

1

2n2
is a convergent p-series

where p = 2.

B. 0 ≤ 1

2n
≤ 1

n+ 1
for each n ≥ 1 and

∞∑
n=1

1

2n
is a divergent p-series where

p = 1.

(c) Suppose that
∞∑
n=0

an was some series that diverges. What could be said about {bn}?
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A.
∞∑
n=0

bn converges.

B.
∞∑
n=0

bn diverges.

C. Whether or not
∞∑
n=0

bn converges or

diverges cannot be determined with
this information.

(d) Suppose that
∞∑
n=0

bn diverges. What could be said about {an}?

A.
∞∑
n=0

an converges.

B.
∞∑
n=0

an diverges.

C. Whether or not
∞∑
n=0

an converges or

diverges cannot be determined with
this information.

(e) Suppose that
∞∑
n=0

bn =
∞∑
n=0

1

3n
which converges. Which of the following statements are

true?

A. 0 ≤ 1

3n
≤ 1

2n
for each n and

∞∑
n=0

1

2n
is

a convergent geometric series where
|r| = 1

2
< 1.

B. 0 ≤ 1

3n
≤ 1 for each n and

∞∑
n=0

1 di-

verges by the Divergence Test.

(f) Suppose that
∞∑
n=0

bn was some series that converges. What could be said about {an}?

A.
∞∑
n=0

an converges.

B.
∞∑
n=0

an diverges.

C. Whether or not
∞∑
n=0

an converges or

diverges cannot be determined with
this information.
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Fact 8.6.11 Supppose we have sequences {an}, {bn} so that for some k we have that 0 ≤
bn ≤ an for each k ≥ n. Then we have the following results:

• If
∞∑
k=n

an converges, then so does
∞∑
k=n

bn.

• If
∞∑
k=n

bn diverges, then so does
∞∑
k=n

an.
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Activity 8.6.12 Suppose that you were handed positive sequences {an}, {bn}. For the first
few values an ≥ bn, but after that what happens is unclear until n = 100. Then for any
n ≥ 100 we have that an ≤ bn.

x

y

· · ·
100

· · ·

Figure 117 Plots of {an}, {bn}

(a) How might we best utilize Fact 8.6.12 to determine the convergence of
∞∑
n=0

an or
∞∑
n=0

bn?

A. Since an is sometimes greater than,
and sometimes less than bn, there is
no way to utilize Fact 8.6.12.

B. Since initially, we have bn ≤ an, we
can utilize Fact 8.6.12 by assuming
an ≥ bn.

C. Since we can rewrite
∞∑
n=0

an =

99∑
n=0

an +
∞∑

n=100

an and
∞∑
n=0

bn =

99∑
n=0

bn+
∞∑

n=100

bn and
99∑
n=0

an,
99∑
n=0

bn are

necessarily finite, we can compare
∞∑

n=100

an,

∞∑
n=100

bn with Fact 8.6.12.
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Fact 8.6.13 The Direct Comparison Test. Let
∑

an and
∑

bn be series with positive
terms. If there is a k such that bn ≤ an for each n ≥ k, then:

• If
∑

an converges, then so does
∑

bn.

• If
∑

bn diverges, then so does
∑

an.
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Activity 8.6.14 Suppose we wish to determine if
∞∑
n=1

1

2n+ 3
converged using Fact 8.6.14.

(a) Does
∞∑
n=1

1

3n
converge or diverge?

(b) For which value k is 1

3n
≤ 1

2n+ 3
for each n ≥ k?

A. 1

3n
≤ 1

2n+ 3
for each n ≥ k = 0.

B. 1

3n
≤ 1

2n+ 3
for each n ≥ k = 1.

C. 1

3n
≤ 1

2n+ 3
for each n ≥ k = 2.

D. 1

3n
≤ 1

2n+ 3
for each n ≥ k = 3.

E. There is no k for which 1

3n
≤ 1

2n+ 3
for each n ≥ k.

(c) Use Fact 8.6.14 and compare
∞∑
n=1

1

2n+ 3
to

∞∑
n=1

1

3n
to determine if

∞∑
n=1

1

2n+ 3
converges

or diverges.
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Activity 8.6.15 Suppose we wish to determine if
∞∑
n=1

1

n2 + 5
converged using Fact 8.6.14.

(a) Which series should we compare
∞∑
n=1

1

n2 + 5
to best utilize Fact 8.6.14?

A.
∞∑
n=1

1

n
.

B.
∞∑
n=1

1

n2
.

C.
∞∑
n=1

1

2n
.

D.
∞∑
n=1

1

n+ 5
.

E.
∞∑
n=1

1

n2 + 5
.

F.
∞∑
n=1

1

2n + 5
.

(b) Using your chosen series and Fact 8.6.14, does
∞∑
n=1

1

n2 + 5
converge or diverge?



Comparison Tests (SQ6)

Activity 8.6.16 For each of the following series, determine if it converges or diverges, and
explain your choice.

(a)
∞∑
n=4

3

log (n) + 2
.

(b)
∞∑
n=3

1

n2 + 2n+ 1
.
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8.7 Ratio and Root Tests (SQ7)

Learning Outcomes
• Use the ratio and root tests to determine if a series converges or diverges.
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Activity 8.7.1 Consider the series
∞∑
n=0

2n

3n − 2
.

(a) Which of these series most closely resembles
∞∑
n=0

2n

3n − 2
?

A.
∞∑
n=0

2

3
.

B.
∞∑
n=0

2

3
n.

C.
∞∑
n=0

(
2

3

)n

.

(b) Based on your previous choice, do we think this series is more likely to converge or
diverge?

(c) Find lim
n→∞

2n+1

3n+1−2
2n

3n−2

= lim
n→∞

2n+1(3n − 2)

(3n+1 − 2)2n
= lim

n→∞

2 · 2n(3n − 2)

3(3n − 2
3
)2n

.

A. lim
n→∞

2n+1

3n+1−2
2n

3n−2

= 0.

B. lim
n→∞

2n+1

3n+1−2
2n

3n−2

=
2

3
.

C. lim
n→∞

2n+1

3n+1−2
2n

3n−2

= 1.

D. lim
n→∞

2n+1

3n+1−2
2n

3n−2

= 2.

E. lim
n→∞

2n+1

3n+1−2
2n

3n−2

= 3.
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Activity 8.7.2 Consider the series
∞∑
n=0

an =
∞∑
n=0

3

2n
.

(a) Does
∞∑
n=0

an =
∞∑
n=0

3

2n
converge?

(b) Find an+1

an
.

A. 2.
B. 1

2
.

C. 2n

2n + 1
.

D. 9

22n+1
.

E. 9

2n+2
.

(c) Find lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
A. −∞.
B. 0.
C. 1

2
.

D. 2.
E. ∞.
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Activity 8.7.3 Consider the series
∞∑
n=1

an =
∞∑
n=1

n2

n+ 1
.

(a) Does
∞∑
n=1

an =
∞∑
n=1

n2

n+ 1
converge?

(b) Find an+1

an
.

A. n+ 1

2
.

B. (n2 + 1)(n+ 1)

(n+ 2)n2
.

C. (n+ 1)2

n+ 2
.

D. 1

2
.

E. (n+ 1)n2

n+ 2
.

(c) Find lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
A. −∞.
B. 0.
C. 1

2
.

D. 2.
E. ∞.
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Activity 8.7.4 Consider the series
∞∑
n=1

an =
∞∑
n=1

1

n
.

(a) Does
∞∑
n=1

an =
∞∑
n=1

1

n
converge?

(b) Find an+1

an
.

(c) Find lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
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Activity 8.7.5 Consider the series
∞∑
n=1

an =
∞∑
n=1

(−1)n

n
.

(a) Does
∞∑
n=1

an =
∞∑
n=1

(−1)n

n
converge?

(b) Find an+1

an
.

(c) Find lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .



Ratio and Root Tests (SQ7)

Fact 8.7.6 The Ratio Test. Let
∑

an be a series and suppose that lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ.
Then

1.
∑

an converges if ρ is less than 1, and

2.
∑

an diverges if ρ is greater than 1.

3. If ρ = 1, we cannot determine if
∑

an converges or diverges with this method.



Ratio and Root Tests (SQ7)

Fact 8.7.7 The Root Test. Let N be an integer and let
∑

an be a series with an ≥ 0

for n ≥ N , and suppose that lim
n→∞

n
√

|an| = ρ. Then

1.
∑

an converges if ρ is less than 1, and

2.
∑

an diverges if ρ is greater than 1.

3. If ρ = 1, we cannot determine if
∑

an converges or diverges with this method.



Ratio and Root Tests (SQ7)

Activity 8.7.8 Consider the series
∞∑
n=0

n2

n!
.

(a) Which of the following is an?

A. n2.
B. n!.

C. n2

n!
.

(b) Which of the following is an+1?

A. n2

n!
.

B. (n+ 1)2.
C. (n+ 1)!.

D. (n+ 1)2

(n+ 1)!
.

E. n2 + 1

n! + 1
.

(c) Which of the following is
∣∣∣∣an+1

an

∣∣∣∣?
A. (n+ 1)2n2

(n+ 1)!n!
.

B. (n+ 1)2n!

(n+ 1)!n2
.

C. (n+ 1)!n!

(n+ 1)2n2
.

D. (n+ 1)!n2

(n+ 1)2n!
.

(d) Using the fact (n+ 1)! = (n+ 1) · n!, simplify
∣∣∣∣an+1

an

∣∣∣∣ as much as possible.

(e) Find lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
(f) Does

∞∑
n=0

n2

n!
converge?



Ratio and Root Tests (SQ7)

Activity 8.7.9

(a) What is an?

(b) Which of the following is n
√

|an|?

A. n+ 1

9
.

B. n

9
.

C. n.
D. 9.

E. 1

9
.

(c) Find lim
n→∞

n
√

|an|.

(d) Does
∞∑
n=1

nn

9n
converge?



Ratio and Root Tests (SQ7)

Activity 8.7.10 For each series, use the ratio or root test to determine if the series converges
or diverges.

(a)
∞∑
n=1

(
1

1 + n

)n

(b)
∞∑
n=1

2n

nn

(c)
∞∑
n=1

(2n)!

(n!)(n!)

(d)
∞∑
n=1

4n(n!)(n!)

(2n)!



Ratio and Root Tests (SQ7)

Activity 8.7.11 Consider the series
∞∑
n=0

2n + 5

3n
.

(a) Use the root test to check for convergence of this series.

(b) Use the ratio test to check for convergence of this series.

(c) Use the comparison (or limit comparison) test to check for convergence of this series.

(d) Find the sum of this series.



Ratio and Root Tests (SQ7)

Activity 8.7.12 Consider
∞∑
n=1

n

3n
. Recall that n

√
n

3n
=
( n

3n

)1/n
=

n1/n

(3n)1/n
.

(a) Let α = lim
n→∞

ln(n1/n) = lim
n→∞

1

n
ln(n). Find α.

(b) Recall that lim
n→∞

n1/n = lim
n→∞

eln(n1/n) = eα. Find lim
n→∞

n1/n.

(c) Find lim
n→∞

n

√
n

3n
= lim

n→∞

( n

3n

)1/n
= lim

n→∞

n1/n

(3n)1/n
.

(d) Does
∞∑
n=1

n

3n
converge?



Ratio and Root Tests (SQ7)

Activity 8.7.13 Consider the series
∞∑
n=0

n2

2n
.

(a) Use the root test to check for convergence of this series.

(b) Use the ratio test to check for convergence of this series.

(c) Use the comparison (or limit comparison) test to check for convergence of this series.



Absolute Convergence (SQ8)

8.8 Absolute Convergence (SQ8)

Learning Outcomes
• Determine if a series converges absolutely or conditionally.



Absolute Convergence (SQ8)

Activity 8.8.1 Recall the series
∞∑
n=1

(−1)n

n
from Activity 8.7.5.

(a) Does the series
∞∑
n=1

(−1)n

n
converge or diverge?

(b) Does the series
∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ converge or diverge?



Absolute Convergence (SQ8)

Activity 8.8.2 Consider the series
∞∑
n=1

(−1)n

n2
.

(a) Does the series
∞∑
n=1

(−1)n

n2
converge or diverge?

(b) Does the series
∞∑
n=1

∣∣∣∣(−1)n

n2

∣∣∣∣ converge or diverge?



Absolute Convergence (SQ8)

Definition 8.8.3 Given a series ∑
an

we say that
∑

an is absolutely convergent if
∑

|an| converges. ♢



Absolute Convergence (SQ8)

Activity 8.8.4 Consider the series:
∞∑
n=1

(−1)nn!

(2n)!
.

(a) Does the series
∞∑
n=1

(−1)nn!

(2n)!
converge or diverge? (Recall Fact 8.7.6.)

(b) Compute |an|.

(c) Does the series
∞∑
n=1

(−1)nn!

(2n)!
converge absolutely?



Absolute Convergence (SQ8)

Fact 8.8.5 Notice that Fact 8.7.6 and Fact 8.7.7 both involve taking absolute values to
determine convergence. As such, series that are convergent by either the Ratio Test or the
Root Test are also absolutely convergent (by applying the same test after taking the absolute
value).



Absolute Convergence (SQ8)

Activity 8.8.6 Consider the series:
∞∑
n=1

−n.

(a) Does the series
∞∑
n=1

−n converge or diverge?

(b) Compute |an|.

(c) Does the series
∞∑
n=1

−n converge absolutely?



Absolute Convergence (SQ8)

Activity 8.8.7 For each of the following series, determine if the series is convergent, and if
the series is absolutely convergent.

(a)
∞∑
n=1

n2(−1)n

n3 + 1

(b)
∞∑
n=1

1

n2

(c)
∞∑
n=1

(−1)n
(
2

3

)n



Absolute Convergence (SQ8)

Activity 8.8.8 If you know a series
∑

an is absolutely convergent, what can you conclude
about whether or not

∑
an is convergent?

A. We cannot determine if
∑

an is conver-
gent.

B.
∑

an is convergent since it “grows

slower” than
∑

|an| (and falls slower
than

∑
−|an|).



Absolute Convergence (SQ8)

Fact 8.8.9 If
∑

an is absolutely convergent, then it must be convergent.



Absolute Convergence (SQ8)

Activity 8.8.10 Find 3 series that are convergent but not absolutely convergent (recall
Fact 8.5.15, Section 8.6).



Series Convergence Strategy (SQ9)

8.9 Series Convergence Strategy (SQ9)

Learning Outcomes
• Identify appropriate convergence tests for various series.



Series Convergence Strategy (SQ9)

Activity 8.9.1 Which test for convergence is the best first test to apply to any series
∞∑
k=1

ak?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Activity 8.9.2 In which of the following scenarios can we successfully apply the Direct
Comparison Test to determine the convergence of the series

∑
ak?

A. When we find a convergent series
∑

bk
where 0 ≤ ak ≤ bk

B. When we find a divergent series
∑

bk
where 0 ≤ ak ≤ bk

C. When we find a convergent series
∑

bk
where 0 ≤ bk ≤ ak

D. When we find a divergent series
∑

bk
where 0 ≤ bk ≤ ak



Series Convergence Strategy (SQ9)

Activity 8.9.3 Which test(s) for convergence would we use for a series
∑

ak where ak

involves kth powers?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Activity 8.9.4 Which test(s) for convergence would we use for a series of the form
∑

ark?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Activity 8.9.5 Which test(s) for convergence would we use for a series
∑

ak where ak
involves factorials and powers?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Activity 8.9.6 Which test(s) for convergence would we use for a series
∑

ak where ak is a
rational function?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Activity 8.9.7 Which test(s) for convergence would we use for a series of the form∑
(−1)kak?

A. Divergence Test

B. Geometric Series

C. Integral Test

D. Direct Comparison Test

E. Limit Comparison Test

F. Ratio Test

G. Root Test

H. Alternating Series Test



Series Convergence Strategy (SQ9)

Fact 8.9.8 Here is a strategy checklist when dealing with series:

1. The divergence test: unless an → 0,
∑

an diverges

2. Geometric Series:
∑

ark converges if −1 < r < 1 and diverges otherwise

3. p-series:
∑ 1

np
converges if p > 1 and diverges otherwise

4. Series with no negative terms: try the ratio test, root test, integral test, or try to
compare to a known series with the comparison test or limit comparison test

5. Series with some negative terms: check for absolute convergence

6. Alternating series: use the alternating series test (Leibniz’s Theorem)

7. Anything else: consider the sequence of partial sums, possibly rewriting the series in a
different form, hope for the best



Series Convergence Strategy (SQ9)

Activity 8.9.9 Consider the series
∞∑
k=3

2√
k − 2

.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.10 Consider the series
∞∑
k=1

k

1 + 2k
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.11 Consider the series
∞∑
k=0

2k2 + 1

k3 + k + 1
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.12 Consider the series
∞∑
k=0

100k

k!
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.13 Consider the series
∞∑
k=1

2k

5k
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.14 Consider the series
∞∑
k=1

k3 − 1

k5 + 1
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.15 Consider the series
∞∑
k=2

3k−1

7k
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.16 Consider the series
∞∑
k=2

1

kk
.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.17 Consider the series
∞∑
k=1

(−1)k+1

√
k + 1

.

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.18 Consider the series
∞∑
k=2

1

k ln(k) .

(a) Which test(s) seem like the most appropriate one(s) to test for convergence or diver-
gence?

A. Divergence Test
B. Geometric Series
C. Integral Test
D. Direct Comparison Test

E. Limit Comparison Test
F. Ratio Test
G. Root Test
H. Alternating Series Test

(b) Apply an appropriate test to determine the convergence of this series.

A. This series is convergent. B. This series is divergent.



Series Convergence Strategy (SQ9)

Activity 8.9.19 Determine which of the following series is convergent and which is divergent.
Justify both choices with an appropriate test.

(a)
∞∑
n=1

4 (−1)n+1 n2

2n3 + 4n2 + 5
.

(b)
∞∑
n=1

n!

3 · 3nn4
.



Chapter 9

Power Series (PS)

Learning Outcomes
How do we use series to understand functions?
By the end of this chapter, you should be able to...

1. Approximate functions defined as power series.

2. Determine the interval of convergence for a given power series.

3. Compute power series by manipulating known exponential/trigonometric/binomial
power series.

4. Determine a Taylor or Maclaurin series for a function.

827



Power Series (PS1)

9.1 Power Series (PS1)

Learning Outcomes
• Approximate functions defined as power series.



Power Series (PS1)

Activity 9.1.1 Suppose we could define a function as an “infinite-length polynomial”:

f(x) = 1 + x+ x2 + x3 + x4 + · · · .

(a) Would f(1) be well-defined as a finite real number?

A. No, the sum would diverge towards
∞.

B. No, the sum would oscillate between

0 and 1.
C. Yes, the sum would be 0.
D. Yes, the sum would be 1.

(b) Would f(−1) be well-defined as a finite real number?

A. No, the sum would diverge towards
∞.

B. No, the sum would oscillate between

0 and 1.
C. Yes, the sum would be 0.
D. Yes, the sum would be 1.

(c) Would f(1/2) be well-defined as a finite real number?

A. No, the sum would diverge towards
∞.

B. Yes, the sum would be approximately
1.

C. Yes, the sum would be approximately
2.

D. Yes, the sum would be exactly 2.

(d) When is f(x) well-defined as a finite real number?

A. Its value is x
1−x

when |x| < 1.

B. Its value is x
1−x

when x < 1.

C. Its value is 1
1−x

when |x| < 1.

D. Its value is 1
1−x

when x < 1.



Power Series (PS1)

Definition 9.1.2 Given a sequence of numbers an and a number c, we may define a function
f(x) as a power series:

f(x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · · .

The above power series is said to be centered at c. Often power series are centered at
0; in this case, they may be written as:

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

The domain of this function (often referred to as the domain of convergence or inter-
val of convergence) is exactly the set of x-values for which the series converges. ♢



Power Series (PS1)

Activity 9.1.3 In Section 9.2 we will learn how to prove that
∞∑
n=0

xn

n!
converges for each real

value x. Thus the function

f(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+

x5

120
+ · · ·

has the domain of all real numbers.

(a) To estimate f(2), use technology to compute the first few terms as follows:

f(2) =
∞∑
n=0

2n

n!
= 1 + 2 +

22

2
+

23

6
+

24

24
+

25

120
+ · · ·

= ? + · · ·
≈ ?

Which of these choices is the closest to this value?

A.
√
2 ≈ 1.414.

B. e2 ≈ 7.389.
C. sin(2) ≈ 0.909.
D. cos(2) ≈ −0.416.

(b) Estimate f(−1) in a similar fashion:

f(−1) =
∞∑
n=0

?

n!
= ? + ? + ? + ? + ? + ? + · · ·

= ? + · · ·
≈ ?

Which of these choices is the closest to this value?

A. 1√
1
≈ 1.000.

B. 1
e1

≈ 0.369.

C. 1
sin(1) ≈ 1.188.

D. 1
cos(1) ≈ 1.851.



Power Series (PS1)

Activity 9.1.4 The function

f(x) =
∞∑
n=0

xn

n!
=

∞∑
n=0

1

n!
(x− 0)n

is centered at 0. Likewise, graphing the polynomial that uses the first six terms

f5(x) = 1 + x+
x2

2
+

x3

6
+

x4

24
+

x5

120

alongside the graph of ex reveals the illustration given in the following figure.

−2 −1 1 2

1

2

3

4

5

6

7

x

yy = ex

y = f5(x)

Figure 118 Plots of y = f5(x), y = ex.
What might we conclude?

A. ex ≈ 1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
near x = 0.

B. ex = 1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
near x = 0.

C. ex ≈ 1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
for all x.

D. ex = 1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
for all x.



Power Series (PS1)

Definition 9.1.5 Given a power series

f(x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · · ,

let

fN(x) =
N∑

n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·+ aN(x− c)N

be its degree N polynomial approximation for x nearby c.
For example,

g3(x) =
3∑

n=0

n2(x− 1)n = 0 + (x− 1) + 4(x− 1)2 + 9(x− 1)3

= −6 + 20x− 23x3 + 9x3

is a degree 3 approximation of g(x) =
∑∞

n=0 n
2(x− 1)n valid for x values nearby 1. ♢



Power Series (PS1)

Activity 9.1.6 Consider a function p(x) defined by p(x) =
∞∑
n=0

2n

(2n)!
xn.

(a) Find p3(x), the degree 3 polynomial approximation for p(x).

(b) Use p3(x) to estimate p(−1).



Convergence of Power Series (PS2)

9.2 Convergence of Power Series (PS2)

Learning Outcomes
• Determine the interval of convergence for a given power series.



Convergence of Power Series (PS2)

Activity 9.2.1 Consider the series
∞∑
n=0

1

n!
xn where x is a real number.

(a) If x = 2, then
∞∑
n=0

1

n!
xn =

∞∑
n=0

2n

n!
. What can be said about this series?

A. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn =

∞∑
n=0

2n

n!
converges.

B. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn =

∞∑
n=0

2n

n!

diverges.
C. None of the techniques we have learned so far allow us to conclude whether

∞∑
n=0

1

n!
xn =

∞∑
n=0

2n

n!
converges or diverges.

(b) If x = −100, then
∞∑
n=0

1

n!
xn =

∞∑
n=0

(−100)n

n!
. What can be said about this series?

A. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn =

∞∑
n=0

(−100)n

n!
converges.

B. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn =

∞∑
n=0

(−100)n

n!
diverges.

C. None of the techniques we have learned so far allow us to conclude whether
∞∑
n=0

1

n!
xn =

∞∑
n=0

(−100)n

n!
converges or diverges.

(c) Suppose that x were some arbitrary real number. What can be said about this series?

A. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn con-

verges.

B. The techniques we have learned so far allow us to conclude that
∞∑
n=0

1

n!
xn diverges.

C. None of the techniques we have learned so far allow us to conclude whether
∞∑
n=0

1

n!
xn converges or diverges.



Convergence of Power Series (PS2)

Remark 9.2.2 Consider a power series
∑

cn(x− a)n. Recall from Fact 8.7.6 that if

lim
n→∞

∣∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ < 1

then
∑

cn(x− a)n converges.
Then recall:

lim
n→∞

∣∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣cn+1(x− a)

cn

∣∣∣∣
= lim

n→∞
|x− a|

∣∣∣∣cn+1

cn

∣∣∣∣
= |x− a| lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ .
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Activity 9.2.3 Consider
∞∑
n=0

1

n2 + 1
xn.

(a) Letting cn = 1
n2+1

, find lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣.
(b) For what values of x is |x| lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1?

A. x < 1.
B. 0 ≤ x < 1.

C. −1 < x < 1.

(c) If x = 1, does
∞∑
n=0

1

n2 + 1
xn converge?

(d) If x = −1, does
∞∑
n=0

1

n2 + 1
xn converge?

(e) Which of the following describe the values of x for which
∞∑
n=0

1

n2 + 1
xn converges?

A. (−1, 1).
B. [−1, 1).

C. (−1, 1].
D. [−1, 1].
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Activity 9.2.4 Consider
∞∑
n=0

2n

5n
(x− 2)n.

(a) Letting cn = 2n

5n
, find lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣.
(b) For what values of x is |x− 2| lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1?

A. −2
5
< x < 2

5
.

B. 8
5
< x < 12

5
.

C. −5
2
< x < 5

2
.

D. −1
2
< x < 9

2
.

(c) If x = 9
2
, does

∞∑
n=0

2n

5n
(x− 2)n converge?

(d) If x = −1
2
, does

∞∑
n=0

2n

5n
(x− 2)n converge?

(e) Which of the following describe the values of x for which
∞∑
n=0

2n

5n
(x− 2)n converges?

A. (−1
2
, 9
2
).

B. [−1
2
, 9
2
).

C. (−1
2
, 9
2
].

D. [−1
2
, 9
2
].
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Activity 9.2.5 Consider
∞∑
n=0

n2

n!

(
x+

1

2

)n

.

(a) Letting cn = n2

n!
, find lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣.
(b) For what values of x is

∣∣∣∣x+
1

2

∣∣∣∣ lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1?

A. 0 ≤ x < ∞. B. All real numbers.

(c) What describes the values of x for which
∞∑
n=0

n2

n!

(
x+

1

2

)n

converges?
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Fact 9.2.6 Given the power series
∑

cn(x − a)n, the center of convergence is x = a.
The radius of convergence is

r =
1

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ .
If lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = 0, we say that r = ∞.

The interval of convergence represents all possible values of x for which
∑

cn(x−a)n

converges, which is of the form:

• (a− r, a+ r)

• [a− r, a+ r)

• (a− r, a+ r]

• [a− r, a+ r]

Depending on if
∑

cn(x− a)n converges when x = a− r or x = a+ r.
If r = ∞ the interval of convergence is all real numbers.



Convergence of Power Series (PS2)

Activity 9.2.7 Find the center of convergence, radius of convergence, and interval of con-
vergence for the series:

∞∑
n=0

3n (−1)n (x− 1)n

n!
.



Convergence of Power Series (PS2)

Activity 9.2.8 Find the center of convergence, radius of convergence, and interval of con-
vergence for the series:

∞∑
n=0

3n(x+ 2)n

n
.



Convergence of Power Series (PS2)

Activity 9.2.9 Consider the power series
∞∑
n=0

2n + 1

n3n
(x+ 1)n.

(a) What is the center of convergence for this power series?

(b) What is the radius of convergence for this power series?

(c) What is the interval of convergence for this power series?

(d) If x = −0.5, does this series converge? (Use the interval of convergence.)

(e) If x = 1, does this series converge? (Use the interval of convergence.)



Manipulation of Power Series (PS3)

9.3 Manipulation of Power Series (PS3)

Learning Outcomes
• Compute power series by manipulating known exponential/trigonometric/binomial

power series.
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Activity 9.3.1 How might we use the known geometric power series

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + . . .

to find the value of

? =
∞∑
n=0

nxn−1 = 0 + 1 + 2x+ 3x2 + 4x3 + . . . ?

(a) Which operation describes the relationship between these two series?

A. Bifurcation
B. Composition
C. Differentiation
D. Multiplication

(b) What is the result of applying this operation to 1
1−x

?

A. 0

B. 1

(1− x)2

C. 1− 1

x

D. x

1− x2
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Fact 9.3.2 Whenever a function is defined as a power series:

f(x) =
∞∑
n=0

an(x− c)n

then its derivative and general antiderivative are also defined as power series with the same
domain of convergence as f(x), found by differentiating or integrating term-by-term:

d

dx
[f(x)] =

∞∑
n=0

d

dx
[an(x− c)n]

=
∞∑
n=0

nan(x− c)n−1

∫
f(x) dx = C +

∞∑
n=0

[∫
an(x− c)n dx

]
= C +

∞∑
n=0

(x− c)n+1

n+ 1
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Activity 9.3.3 Let’s investigate the power series

exp(x) =
∞∑
n=0

1

n!
xn = 1 + x+

x2

2
+

x3

6
+

x4

24
+ . . . .

(a) What is the value of exp(0)?

A. 0.
B. 1.

C. 2.
D. ∞.

(b) What is the value of exp′(x)?

A. 0 + 1 + x+ x2

2
+ x3

6
+ . . ..

B. 1 + x+ x2

6
+ x3

24
+ x4

120
+ . . ..

C. 0 + 1 + x+ x2

3
+ x3

12
+ x4

60
+ . . ..

D. 1 + x+ x2

3
+ x3

12
+ x4

60
+ . . ..

(c) What can we conclude from our calculation of f ′(x)?

A. exp′(x) = [exp(x)]2.
B. exp′(x) = exp(x2).

C. exp′(x) = 2 exp(x).
D. exp′(x) = exp(x).

(d) What function do we know of that shares each of these properites?

A. exp(x) = 1

1 + x
B. exp(x) = cos(x)

C. exp(x) = ex

D. exp(x) = 0
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Fact 9.3.4 We have that

exp(x) = ex =
∞∑
n=0

1

n!
xn =

∞∑
n=0

xn

n!
.

That is, for any real number x, the series exp(x) =
∞∑
n=0

1

n!
xn will converge to ex.
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Fact 9.3.5 We may similarly determine that

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n =

∞∑
n=0

(−1)n
x2n

(2n)!

and
sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

for all real numbers x. However, we will delay until Fact 9.4.6 to prove this fact another
way.
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Activity 9.3.6 Suppose we wish to find the power series for the function f(x) = e2x by

modifying the power series exp(z) = ez =
∞∑
n=0

zn

n!
.

(a) Substituting z = 2x, what is the power series for exp(2x)?

A. exp(2x) =
∞∑
n=0

2xn

n!
= 2 + 2x+ x2 +

1

3
x3 + . . ..

B. exp(2x) =
∞∑
n=0

2xn+1

n!
= 2x+ 2x2 + x3 +

1

3
x4 + . . ..

C. exp(2x) =
∞∑
n=0

(2x)n

n!
= 1 + 2x+ 2x2 +

4

3
x3 + . . ..

D. exp(2x) =
∞∑
n=0

xn

(2n)!
= 1 +

x

2
+

x2

4
+

x3

720
+ . . ..

(b) What is the interval of convergence for x for this series?

A. (−∞,∞).

B.
(
−1

2
,
1

2

)
.

C.
(
0,

1

2

)
.

D.
(
−1

2
,
1

2

]
.
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Fact 9.3.7 If a power series

f(x) =
∞∑
n=0

an(x− c)n

is known, then for any polynomial g(x) the composition f ◦ g has a power series given by

(f ◦ g)(x) = f(g(x)) =
∞∑
n=0

an(g(x)− c)n

where the domain of convergence is transformed based upon the transformation given by g(x).
For example, if f(x) has the domain of convergence −2 ≤ x < 2, then f(2x+ 4) has the

domain of convergence:
−2 ≤ 2x+ 4 < 2

−6 ≤ 2x < −2

−3 ≤ x < −1
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Activity 9.3.8 Suppose we wish to find the power series for the function f(x) = 1
x
.

(a) Which of the following represents the power series for g(r) = 1
1−r

?

A. g(r) =
∞∑
n=0

rxn.

B. g(r) =
∞∑
n=0

(rx)n.

C. g(r) =
∞∑
n=0

rn.

D. g(r) =
∞∑
r=0

xr.

(b) For what value of r is 1
1−r

= 1
x
?

A. r = x− 1.
B. r = 1− x.

C. r = x+ 1.
D. r = −x.

(c) Substituting r with this value, which of the following is a power series for f(x) = 1
x
?

A. f(x) =
∞∑
n=0

(−x)n.

B. f(x) =
∞∑
n=0

(1− x)n.

C. f(x) =
∞∑
n=0

(x− 1)n.

D. f(x) =
∞∑
n=0

(1 + x)n.

(d) Given that the domain of convergence for r in f(r) is −1 < r < 1, what should be the
domain of convergence for x in f(x)?

A. −1 < x < 1.
B. −2 < x < 0.

C. −2 < x < 2.
D. 0 < x < 2.
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Activity 9.3.9 Suppose we wish to find the power series for the function f(x) = 1
3−2x

. Recall

that g(x) = 1
1−r

=
∞∑
n=0

rn.

(a) For what value of r is 1
1−r

= 1
3−2x

?

A. r = 2x− 2.
B. r = 2− 2x.

C. r = 2x− 3.
D. r = 3− 2x.

(b) Evaluating r at the previously found value, which of the following is the power series
of f(x) = 1

3−2x
?

A. f(x) =
∞∑
n=0

(3− 2x)n.

B. f(x) =
∞∑
n=0

(2x− 3)n.

C. f(x) =
∞∑
n=0

(2− 2x)n.

D. f(x) =
∞∑
n=0

(2x− 2)n.

(c) Given that the interval of convergence for r is −1 < r < 1, what is the interval of
convergence for x?

A. −1 < x < 3
2
.

B. −1
2
< x < 1.

C. 1
2
< x < 3

2
.

D. −1
2
< x < 3

2
.
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Activity 9.3.10 Suppose we wish to find the power series for the function f(x) = 1
1+x2 .

Recall that g(x) = 1
1−r

=
∞∑
n=0

rn.

(a) For what value of r is 1
1−r

= 1
1+x2 ?

A. r = x2.
B. r = −x2.

C. r = 1− x2.
D. r = x2 − 1.

(b) Evaluating r at the previously found value, which of the following is the power series
of f(x) = 1

1+x2 ?

A. 1

1 + x2
=

∞∑
n=0

(−1)nx2n.

B. 1

1 + x2
=

∞∑
n=0

(1− x2)n.

C. 1

1 + x2
=

∞∑
n=0

x2n.

D. 1

1 + x2
=

∞∑
n=0

(x2 − 1)n.

(c) Given that the interval of convergence for r is −1 < r < 1, what is the interval of
convergence for x?

A. −1 < x < 1.
B. −1 < x < 0.

C. 0 < x < 1.
D. 0 < x < 4.

(d) How can the power series for 1
1+x2 be manipulated to obtain a power series for

arctan(x)?

A. Differentiate each term.
B. Integrate each term.

C. Replace x with x2 in each term.
D. Replace x with 1/x in each term.

(e) Which of these power series is the result of this manipulation?

A. arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

B. arctan(x) =
∞∑
n=0

(−1)n
x2n−1

2n− 1
.
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C. arctan(x) =
∞∑
n=0

(−1)n(2n)x2n−1.

D. arctan(x) =
∞∑
n=0

(−1)n(2n+ 1)x2n.
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Activity 9.3.11 What function f(x) has power series f(x) =
∞∑
n=0

(−1)nxn

n!
= 1− x+

x2

2
−

x3

6
+ · · ·?

A. f(x) = (−1)nex.

B. f(x) = −ex.

C. f(x) = e−x.

D. f(x) = −e−x.
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Activity 9.3.12 What function f(x) has power series f(x) =
∞∑
n=0

xn+3

n!
= x3 + x4 +

x5

2
+

x6

6
+ · · ·?

A. f(x) = ex+3.

B. f(x) = ex
3 .

C. f(x) = e3x.

D. f(x) = x3ex.
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Fact 9.3.13 If a power series

f(x) =
∞∑
n=0

an(x− c)n

is known, then for any polynomial g(x) the product fg has a power series given by

(fg)(x) = f(x)g(x) =
∞∑
n=0

ang(x)(x− c)n

where the domain of convergence is the same as f(x).
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Activity 9.3.14 What function f(x) has power series f(x) =
∞∑
n=3

xn = x3 + x4 + · · ·?

A. f(x) = 1
1−3x

.

B. f(x) = 3
1−x

.

C. f(x) = 1
1−x

− x2 − x− 1.

D. f(x) = x3

1−x
.
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Activity 9.3.15 The function n(x) = e−x2 is one whose integrals are very important for
statistics. However, it does not admit an elementary antiderivative.

(a) Which of the following best represents the power series for n(x) = e−x2?

A. n(x) = −x2

∞∑
n=0

1

n!
xn =

∞∑
n=0

− 1

n!
xn+2.

B. n(x) =
∞∑
n=0

1

n!
(−x2)n =

∞∑
n=0

1

n!
(−1)nx2n.

C. n(x) = x−2

∞∑
n=0

1

n!
(−x)n =

∞∑
n=0

1

n!
(−1)n+2xn+2.

(b) Which of the following best represents a degree 10 polynomial that approximates n(x)?

A. n10(x) = −x2 − x3 − 1

2
x4 − 1

6
x5 − 1

24
x6 − 1

120
x7 − 1

720
x8 − 1

5040
x9 − 1

40320
x10.

B. n10(x) = x2 − x3 +
1

2
x4 − 1

6
x5 +

1

24
x6 − 1

120
x7 +

1

720
x8 − 1

5040
x9 +

1

40320
x10.

C. n10(x) = 1− x2 + 1
2
x4 − 1

6
x6 + 1

24
x8 − 1

120
x10.

(c) Use your choice of n10(x) to estimate
∫ 1

0

n(x)dx by computing
∫ 1

0

n10(x)dx.
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Activity 9.3.16 Recall that

g(x) =
∞∑
n=0

xn =
1

1− x

for −1 < x < 1.

(a) Which of the following represents an antiderivative of g(x) = 1

1− x
?

A. G(x) = C +
∞∑
n=0

xn+1.

B. G(x) = C +
∞∑
n=1

1

n
xn+1.

C. G(x) = C +
∞∑
n=0

1

n+ 1
xn+1.

D. G(x) = C +
∞∑
n=1

1

n+ 1
xn.

(b) Find the interval of convergence for this series.

(c) Recall that G̃(x) = ln |1− x| is an antiderivative of g(x) = 1

1− x
. For which C is your

chosen G(x) = ln |1− x|?

(d) Use G4(x) to estimate
∫ 4

2

ln |1− x|dx.
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Activity 9.3.17 Recall that the power series for f(x) = sin (x) is:

sin (x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
.

(a) Find a power series for sin (−5x2).

(b) Find a power series for x4 sin (x).

(c) Find a power series for F (x), an antiderivative of f(x) such that F (0) = 4.
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Activity 9.3.18 Recall that the power series for f(x) = − 1
x−1

is:

− 1

x− 1
=

∞∑
n=0

xn.

(a) Find a power series for 1
x4+1

.

(b) Find a power series for − x5

x−1
.

(c) Find a power series for f ′(x).



Manipulation of Power Series (PS3)

Activity 9.3.19 Recall that

g(x) =
∞∑
n=0

xn =
1

1− x

for −1 < x < 1 and d
dx
[arctan(x)] = 1

1+x2 = g(−x2). We computed the power series for
g(−x2) in Activity 9.3.10.

(a) Integrate this power series and find C to find a power series for H(x) = arctan(x).
Recall that arctan(0) = 0.

(b) Find the interval of convergence for this series.
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Activity 9.3.20

(a) Find the power series for α(x) = ln |x|.

(b) Find the interval of convergence for this series.
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Activity 9.3.21

(a) Find the power series for β(x) = arctan(−3x2).

(b) Find the interval of convergence for this series.



Taylor Series (PS4)

9.4 Taylor Series (PS4)

Learning Outcomes
• Determine a Taylor or Maclaurin series for a function.



Taylor Series (PS4)

Activity 9.4.1 The following tasks will help us find a mechanism to produce a power series
given information about its derivatives.

(a) Find the 2nd derivative of x2.

A 2x

B 2

C 4x

D 4

(b) Find the 3rd derivative of x3.

A 2

B 3x

C 6

D 12x

(c) Find the 4th derivative of x4.

A 18

B 24

C 32

D 64

(d) Based on these results, which of the following should always equal the nth derivative
of xn with respect to x?

A n

B n2

C n!

D nn
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Activity 9.4.2 Let’s use derivatives to rediscover the sequence an which gives a power series
representation for ex.

(a) Let’s say that

ex =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 . . . .

What must a0 be to satisfy e0 = 1?

(b) Then,
d

dx
[ex] = ex = a1 + 2a2x+ 3a3x

2 + 4a4x
3 . . . .

What must a1 be to also satisfy e0 = 1?

(c) Then,
d2

dx2
[ex] = ex = 2a2 + 6a3x+ 12a4x

2 + . . . .

What must a2 be to also satisfy e0 = 1?

(d) Then,
d3

dx3
[ex] = ex = 6a3 + 24a4x+ . . . .

What must a3 be to also satisfy e0 = 1?

(e) So this 6a3 term was obtained from the fact that the 3rd derivative of x3 is 3! = 6.
So finally, we may skip ahead to the nth derivative:

dn

dxn
[ex] = ex = n! · an + (n+ 1)! · an+1 · x+ . . . .

What must an be to also satisfy e0 = 1?

(f) This reveals the power series we previously found for ex:

ex =
∞∑
n=0

anx
n =

∞∑
n=0

1

n!
xn.

So in general, if f(x) = a0 + a1x+ a2x
2 + . . ., then

dn

dxn
[f(x)] = f (n)(x) = n! · an + (n+ 1)! · an+1 · x+ . . . .

What must an be to produce the correct value for f (n)(0)?
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Fact 9.4.3 If f(x) can be written as a power series, then there is a real number c such that

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f (3)(c)

3!
(x− c)3 + . . .

on some interval centered at x = c.
In fact, the functions that can be represented as power series are exactly those functions

which are infinitely differentiable on some open interval.
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Definition 9.4.4 The Taylor series generated by f(x) and centered at x = c is given by

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f (3)(c)

3!
(x− c)3 + . . .

with an interval of convergence determinable by series convergence rules.
When c = 0,

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

= f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + . . .

is called the Maclaurin series generated by f . ♢
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Activity 9.4.5 Observe that f(x) = sin(x) is a function such that:

f(0) f ′(0) f ′′(0) f (3)(0) f (4)(0) f (5)(0) f (6)(0) f (7)(0)

sin(0) cos(0) − sin(0) − cos(0) sin(0) cos(0) − sin(0) − cos(0)
0 1 0 −1 0 1 0 −1

(a) Given the zeros appearing for every even derivative above, which of these is a valid

simplification of the Maclarin series
∞∑
n=0

f (n)(0)

n!
xn for sin(x)?

A
∞∑
n=1

f (n)(0)

n!
xn

B
∞∑

2n=0

f (n)(0)

n!
xn

C
∞∑
n=0

f (2n)(0)

(2n)!
x2n

D
∞∑
n=0

f (2n+1)(0)

(2n+ 1)!
x2n+1

(b) Now consider the following consolidated chart:

f (1)(0) f (3)(0) f (5)(0) f (7)(0)

cos(0) − cos(0) cos(0) − cos(0)
1 −1 1 −1

Which formula yields these alternating 1s and −1s appearing for f (2n+1)(0)?

A f (2n+1)(0) = (−1)n

B f (2n+1)(0) = (−1)n+1

C f (2n+1)(0) = (−1)2n

D f (2n+1)(0) = (−1)2n+1
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Fact 9.4.6 The power series we’ve introduced for each of the following functions are in fact
their Maclaurin series (Taylor series centered at 0).

1

1− x
=

∞∑
n=0

n!

n!
xn = 1 + x+ x2 + x3 + . . .

ex =
∞∑
n=0

1

n!
xn = 1 + x+

x2

2
+

x3

6
+ . . .

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2
+

x4

24
− x6

720
+ . . .

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

6
+

x5

120
− x7

5040
+ . . .
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Definition 9.4.7 For a function f(x) with a Taylor series centered at x = c,

f(x) ≈ Tk(x)

=
k∑

n=0

f (n)(c)

n!
(x− c)n

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + . . .+

f (k)(c)

k!
(x− c)k

where Tk(x) is called the kth degree Taylor polynomial generated by f and centered at
x = c.

The kth degree Taylor polynomial can be seen as the “best” polynomial of degree k or less
for approximating f(x) for values close to x = c. Note that the 1st degree Taylor polynomial
is also known as the linearization of f . ♢
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Activity 9.4.8 Let f(x) be a function such that:

f(4) f ′(4) f ′′(4) f ′′′(4) f (4)(4) f (5)(4) f (6)(4)

0 1 2 3 4 5 6

(a) Find a Taylor polynomial for f(x) centered at x = 4 of degree 3.

(b) Using the table above, find a general closed form for f (n)(4).

(c) Use (b) to find a Taylor series for f(x) centered at x = 4.
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Activity 9.4.9 Let f(x) be a function such that:

f(−2) f ′(−2) f ′′(−2) f ′′′(−2) f (4)(−2) f (5)(−2) f (6)(−2)

0 2 −16 54 −128 250 −432

(a) Find a Taylor polynomial for f(x) centered at x = −2 of degree 3.

(b) Using the table above, find a general closed form for f (n)(−2).

(c) Use (b) to find a Taylor series for f(x) centered at x = −2.
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Remark 9.4.10 You might have seen
√
−1 written as i, and know that z is a complex

number if z = a + bi for some real numbers a and b. Note that i2 = −1, i3 = (i2)i = −i,
i4 = (i2)2 = 1, i5 = (i4)i = i, and so on. This gives rise to the following notion.
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Definition 9.4.11 Euler’s Identity. For any real number θ,

eiθ = 1 +
iθ

1!
+

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+

(iθ)8

8!
+ . . .

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− θ6

6!
− iθ7

7!
+

θ8

8!
+ . . .

=

(
1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . .

)
+ i

(
θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . .

)
= cos(θ) + i sin(θ).

♢
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Activity 9.4.12 Use Euler’s identity to evaluate eiπ.
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