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Chapter 1

Systems of Linear Equations (LE)

Learning Outcomes
How can we solve systems of linear equations?
By the end of this chapter, you should be able to...

1. Translate back and forth between a system of linear equations, a vector equation, and
the corresponding augmented matrix.

2. Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced
row echelon form.

3. Determine the number of solutions for a system of linear equations or a vector equation.

4. Compute the solution set for a system of linear equations or a vector equation with
infinitely many solutions.

1



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Readiness Assurance.
Before beginning this chapter, you should be able to...

1. Determine if a system to a two-variable system of linear equations will have zero,
one, or infinitely-many solutions by graphing.

• Review: Khan Academy1

2. Find the unique solution to a two-variable system of linear equations by back-
substitution.

• Review: Khan Academy2

3. Describe sets using set-builder notation, and check if an element is a member of
a set described by set-builder notation.

• Review: YouTube3

1.1 Linear Systems, Vector Equations, and Augmented
Matrices (LE1)

Learning Outcomes
• Translate back and forth between a system of linear equations, a vector equation, and

the corresponding augmented matrix.

1bit.ly/2l21etm
2www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/

alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
3youtu.be/xnfUZ-NTsCE

http://bit.ly/2l21etm
https://www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
https://youtu.be/xnfUZ-NTsCE


Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.1 Consider the pairs of lines described by the equations below. Decide which
of these are parallel, identical, or transverse (i.e., intersect in a single point).

(a)

−x1 + 3x2 = 1

2x1 − 5x2 = 2

(b)

−x1 + 3x2 = 1

2x1 − 6x2 = −2

(c)

−x1 + 3x2 = 1

2x1 − 6x2 = 3



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.2 A matrix is an m× n array of real numbers with m rows and n columns:
a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 =
[
v⃗1 v⃗2 · · · v⃗n

]
.

Frequently we will use matrices to describe an ordered list of its column vectors:
a11
a21
...

am1

 ,


a12
a22
...

am2

 , · · · ,


a1n
a2n
...

amn

 = v⃗1, v⃗2, · · · , v⃗n.

When order is irrelevant, we will use set notation:


a11
a21
...

am1

 ,


a12
a22
...

am2

 , · · · ,


a1n
a2n
...

amn


 = {v⃗1, v⃗2, · · · , v⃗n}.

♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.3 A Euclidean vector is an ordered list of real numbers
a1
a2
...
an

 .

We will find it useful to almost always typeset Euclidean vectors vertically, but the notation[
a1 a2 · · · an

]T is also valid when vertical typesetting is inconvenient. The set of all
Euclidean vectors with n components is denoted as Rn, and vectors are often described using
the notation v⃗.

Each number in the list is called a component, and we use the following definitions for
the sum of two vectors, and the product of a real number and a vector:

a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 c


a1
a2
...
an

 =


ca1
ca2
...

can


♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Example 1.1.4 Following are some examples of addition and scalar multiplication in R4.
3
−3
0
4

+


0
2
7
1

 =


3 + 0
−3 + 2
0 + 7
4 + 1

 =


3
−1
7
5



−4


0
2
−2
3

 =


−4(0)
−4(2)
−4(−2)
−4(3)

 =


0
−8
8

−12


□



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.5 A linear equation is an equation of the variables xi of the form

a1x1 + a2x2 + · · ·+ anxn = b.

A solution for a linear equation is a Euclidean vector
s1
s2
...
sn


that satisfies

a1s1 + a2s2 + · · ·+ ansn = b

(that is, a Euclidean vector whose components can be plugged into the equation). ♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.6 In previous classes you likely used the variables x, y, z in equations. However,
since this course often deals with equations of four or more variables, we will often write our
variables as xi, and assume x = x1, y = x2, z = x3, w = x4 when convenient.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.7 A system of linear equations (or a linear system for short) is a
collection of one or more linear equations.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
... ... ... ...

am1x1 + am2x2 + . . .+ amnxn = bm

Its solution set is given by


s1
s2
...
sn


∣∣∣∣∣∣∣∣∣


s1
s2
...
sn

 is a solution to all equations in the system

 .

♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.8 When variables in a large linear system are missing, we prefer to write the
system in one of the following standard forms:

Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1 +0x2 +3x3 = 3

3x1 − 2x2 +4x3 = 0

0x1 − 1x2 +1x3 =−2

Concise standard form:

x1 +3x3 = 3

3x1 − 2x2 +4x3 = 0

− x2 + x3 =−2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.9 It will often be convenient to think of a system of equations as a vector
equation.

By applying vector operations and equating components, it is straightforward to see that
the vector equation

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


is equivalent to the system of equations

x1 +3x3 = 3

3x1 − 2x2 +4x3 = 0

− x2 + x3 =−2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.10 A linear system is consistent if its solution set is non-empty (that is,
there exists a solution for the system). Otherwise it is inconsistent. ♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Fact 1.1.11 All linear systems are one of the following:

1. Consistent with one solution: its solution set contains a single vector, e.g.


 1

2
3


2. Consistent with infinitely-many solutions: its solution set contains infinitely many

vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


3. Inconsistent: its solution set is the empty set, denoted by either {} or ∅.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.12 All inconsistent linear systems contain a logical contradiction. Find a
contradiction in this system to show that its solution set is the empty set.

−x1 + 2x2 = 5

2x1 − 4x2 = 6



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.13 Consider the following consistent linear system.

−x1 + 2x2 = −3

2x1 − 4x2 = 6

(a) Find several different solutions for this system:[
1
−1

] [
?
2

] [
0
?

] [
?
?

] [
?
?

]
(b) Suppose we let x2 = a where a is an arbitrary real number. Which of these expressions

for x1 in terms of a satisfies both equations of the linear system?

A. x1 = −3a

B. x1 = 3

C. x1 = 2a+ 3

D. x1 = −4a+ 6

(c) Given x2 = a and the expression you found in the previous task, which of these
describes the solution set for this system?

A.
{[

2a+ 3
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
2a+ 3

] ∣∣∣∣ a ∈ R
} C.

{[
a
b

] ∣∣∣∣ a ∈ R
}

D.
{[

2a+ 3
2b− 3

] ∣∣∣∣ a ∈ R
}



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.14 Consider the following linear system.

x1 +2x2 − x4 = 3

x3 +4x4 =−2

Substitute x2 = a and x4 = b, and then solve for x1 and x3:

x1 = ? x3 = ?

Then use these to describe the solution set


?
a
?
b


∣∣∣∣∣∣∣∣ a, b ∈ R


to the linear system.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Observation 1.1.15 Solving linear systems of two variables by graphing or substitution
is reasonable for two-variable systems, but these simple techniques won’t usually cut it for
equations with more than two variables or more than two equations. For example,

−2x1 − 4x2 + x3 − 4x4 =−8

x1 +2x2 +2x3 +12x4 =−1

x1 +2x2 + x3 + 8x4 = 1

has the exact same solution set as the system in the previous activity, but we’ll want to learn
new techniques to compute these solutions efficiently.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.16 The only important information in a linear system are its coefficients and
constants.

Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1 +0x2 +3x3 = 3

3x1 − 2x2 +4x3 = 0

0x1 − 1x2 +1x3 =−2

Coefficients/constants:

1 0 3 | 3

3 −2 4 | 0

0 −1 1 | −2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.17 A system of m linear equations with n variables is often represented by
writing its coefficients and constants in an augmented matrix: the m × n matrix of its
coefficients augmented with the m constant values as a final column.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
... ... ... ...

am1x1 + am2x2 + . . .+ amnxn = bm
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... . . . ... ...

am1 am2 · · · amn bm


Sometimes, we will find it useful to refer only to the coefficients of the linear system (and ig-
nore its constant terms). We call the m×n array consisting of these coefficients a coefficient
matrix. 

a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn


♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Example 1.1.18 The corresponding augmented matrix for this system is obtained by simply
writing the coefficients and constants in matrix form.

Linear system:

x1 +3x3 = 3

3x1 − 2x2 +4x3 = 0

− x2 + x3 =−2

Augmented matrix: 1 0 3 3
3 −2 4 0
0 −1 1 −2


Vector equation:

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


□



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.19 Consider the following augmented matrices. For each of them, decide how
many variables and how many equations the corresponding linear system has.

(a)  2 1 3 3
1 −2 4 3
3 −1 7 −1


(b) 

2 1 3 3
1 −2 4 3
3 −1 7 −1
3 −1 7 −1


(c) 

2 0 3 3
1 0 4 3
3 0 7 −1
3 0 7 −1


(d) 

2 1 3 3
1 −2 4 3
0 0 0 0
3 −1 7 −1





Row Reduction of Matrices (LE2)

1.2 Row Reduction of Matrices (LE2)

Learning Outcomes
• Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced

row echelon form.



Row Reduction of Matrices (LE2)

Activity 1.2.1 Consider the following matrices:

A =

 1 0 3 3
3 −2 4 0
0 −1 1 −2

 , B =

 2 5 3
1 −2 4
3 −1 7


(a) Write down a linear system whose augmented matrix is A. Can you write down an-

other?

(b) Write down a linear system whose coefficient matrix is B. Can you write down another?



Row Reduction of Matrices (LE2)

Definition 1.2.2 Two systems of linear equations (and their corresponding augmented ma-
trices) are said to be equivalent if they have the same solution set.

For example, both of these systems share the same solution set
{[

1
1

]}
.

3x1 − 2x2 =1

x1 +4x2 =5

3x1 − 2x2 =1

4x1 +2x2 =6

Therefore these augmented matrices are equivalent (even though they’re not equal), which
we denote with ∼: [

3 −2 1
1 4 5

]
̸=

[
3 −2 1
4 2 6

]
[
3 −2 1
1 4 5

]
∼

[
3 −2 1
4 2 6

]
♢



Row Reduction of Matrices (LE2)

Activity 1.2.3 Consider whether these matrix manipulations (A) must keep the same solu-
tion set, or (B) might result in a different solution set for the corresponding linear system.

(a) Swapping two rows, for example:

[
1 2 4
1 3 5

]
∼

[
1 3 5
1 2 4

]
x+ 2y = 4 x+ 3y = 5

x+ 3y = 5 x+ 2y = 4

A. Solutions must be the same. B. Solutions might be different.

(b) Swapping two columns, for example:

[
1 2 4
1 3 5

]
∼

[
2 1 4
3 1 5

]
x+ 2y = 4 2x+ y = 4

x+ 3y = 5 3x+ y = 5

A. Solutions must be the same. B. Solutions might be different.

(c) Add a constant to every term of a row, for example:

[
1 2 4
1 3 5

]
∼

[
1 + 3 2 + 3 4 + 3
1 3 5

]
x+ 2y = 4 4x+ 5y = 7

x+ 3y = 5 x+ 3y = 5

A. Solutions must be the same. B. Solutions might be different.

(d) Multiply a row by a nonzero constant, for example:

[
1 2 4
1 3 5

]
∼

[
3(1) 3(2) 3(4)
1 3 5

]
x+ 2y = 4 3x+ 6y = 12

x+ 3y = 5 x+ 3y = 5

A. Solutions must be the same. B. Solutions might be different.

(e) Add one row to another row, for example:

[
1 2 4
1 3 5

]
∼

[
1 2 4

1 + 1 3 + 2 5 + 4

]
x+ 2y = 4 ? x+ ? y = ?

x+ 3y = 5 ? x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.

(f) Replace a column with zeros, for example:



Row Reduction of Matrices (LE2)

[
1 2 4
1 3 5

]
∼

[
1 0 4
1 0 5

]
x+ 2y = 4 ? x+ ? y = ?

x+ 3y = 5 ? x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.

(g) Replace a row with zeros, for example:

[
1 2 4
1 3 5

]
∼

[
1 2 4
0 0 0

]
x+ 2y = 4 ? x+ ? y = ?

x+ 3y = 5 ? x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.



Row Reduction of Matrices (LE2)

Activity 1.2.4

Standalone
Embed

How does adding row multiples to other rows affect a linear system’s solution set?

A. Solutions must be the same. B. Solutions might be different.

https://tbil.org/AT1-interactive-add-rows.html
https://tbil.org/AT1-interactive-add-rows-if.html


Row Reduction of Matrices (LE2)

Definition 1.2.5 The following three row operations produce equivalent augmented ma-
trices.

1. Swap two rows, for example, R1 ↔ R2:[
1 2 3
4 5 6

]
∼

[
4 5 6
1 2 3

]
2. Multiply a row by a nonzero constant, for example, 2R1 → R1:[

1 2 3
4 5 6

]
∼

[
2(1) 2(2) 2(3)
4 5 6

]
3. Add a constant multiple of one row to another row, for example, R2 − 4R1 → R2:[

1 2 3
4 5 6

]
∼

[
1 2 3

4− 4(1) 5− 4(2) 6− 4(3)

]
Observe that we will use the following notation: (Combination of old rows) → (New row).

♢



Row Reduction of Matrices (LE2)

Activity 1.2.6 Each of the following linear systems has the same solution set.

A)

x+2y+ z =3

−x− y+ z =1

2x+5y+3z =7

B)

2x+5y+3z =7

−x− y+ z =1

x+2y+ z =3

C)

x − z =1

y+2z =4

y+ z =1

D)

x+2y+ z =3

y+2z =4

2x+5y+3z =7

E)

x − z =1

y+2z =4

z =3

F)

x+2y+ z =3

y+2z =4

y+ z =1

Sort these six equivalent linear systems from most complicated to simplest (in your opin-
ion).



Row Reduction of Matrices (LE2)

Activity 1.2.7 Here we’ve written the sorted linear systems from Activity 1.2.6 as aug-
mented matrices. 2 5 3 7

−1 −1 1 1
1 2 1 3

 ∼

 1 2 1 3
−1 −1 1 1
2 5 3 7

 ∼

 1 2 1 3
0 1 2 4
2 5 3 7

 ∼

∼

 1 2 1 3

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 2 4
0 0 −1 −3


Assign the following row operations to each step used to manipulate each matrix to the next:

R3 − 1R2 → R3 R2 + 1R1 → R2

R1 ↔ R3

R3 − 2R1 → R3 R1 − 2R3 → R1



Row Reduction of Matrices (LE2)

Definition 1.2.8 A matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

Every matrix has a unique reduced row echelon form. If A is a matrix, we write RREF(A)
for the reduced row echelon form of that matrix. ♢



Row Reduction of Matrices (LE2)

Activity 1.2.9 Recall that a matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

A =

 1 0 0 3
0 0 1 −1
0 0 0 0

 B =

 1 0 4 3
0 1 0 −1
0 0 1 2

 C =

 0 0 0 0
1 2 0 3
0 0 1 −1





Row Reduction of Matrices (LE2)

Activity 1.2.10 Recall that a matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

D =

 1 0 2 −3
0 3 3 −3
0 0 0 0

 E =

 0 1 0 7
1 0 0 4
0 0 0 0

 F =

 1 0 0 4
0 1 0 7
0 0 1 0





Row Reduction of Matrices (LE2)

Remark 1.2.11 In practice, if we simply need to convert a matrix into reduced row echelon
form, we use technology to do so.

However, it is also important to understand the Gauss-Jordan elimination algorithm
that a computer or calculator uses to convert a matrix (augmented or not) into reduced row
echelon form. Understanding this algorithm will help us better understand how to interpret
the results in many applications we use it for in Chapter 2.



Row Reduction of Matrices (LE2)

Activity 1.2.12

(a) Consider the matrix:  2 6 −1 6
1 3 −1 2
−1 −3 2 0

 .

Which row operation is the best choice for the first move in converting to RREF?

A. Add row 3 to row 2 (R2 +R3 → R2)
B. Add row 2 to row 3 (R3 +R2 → R3)
C. Swap row 1 to row 2 (R1 ↔ R2)
D. Add -2 row 2 to row 1 (R1 − 2R2 → R1)

(b) Consider the matrix:  1 3 −1 2
2 6 −1 6
−1 −3 2 0

 .

Which row operation is the best choice for the next move in converting to RREF?

A. Add row 1 to row 3 (R3 +R1 → R3)
B. Add -2 row 1 to row 2 (R2 − 2R1 → R2)
C. Add 2 row 2 to row 3 (R3 + 2R2 → R3)
D. Add 2 row 3 to row 2 (R2 + 2R3 → R2)

(c) Consider the matrix:  1 3 −1 2
0 0 1 2
0 0 1 2

 .

Which row operation is the best choice for the next move in converting to RREF?

A. Add row 1 to row 2 (R2 +R1 → R2)
B. Add -1 row 3 to row 2 (R2 −R3 → R2)
C. Add -1 row 2 to row 3 (R3 −R2 → R3)
D. Add row 2 to row 1 (R1 +R2 → R1)

(d) Consider the matrix:  2 6 −1 6
1 3 −1 2
−1 −3 2 0

 .

Mark the position where the first pivot should be. Which row operation is the best
choice for the first move in converting to RREF?

A. Add row 3 to row 2 (R2 +R3 → R2)



Row Reduction of Matrices (LE2)

B. Add row 2 to row 3 (R3 +R2 → R3)
C. Swap row 1 to row 2 (R1 ↔ R2)
D. Add -2 row 2 to row 1 (R1 − 2R2 → R1)



Row Reduction of Matrices (LE2)

Observation 1.2.13 The steps for the Gauss-Jordan elimination algorithm may be summa-
rized as follows:

1. Ignoring any rows that already have marked pivots, identify the leftmost column with
a nonzero entry.

2. Use row operations to obtain a pivot of value 1 in the topmost row that does not
already have a marked pivot.

3. Mark this pivot, then use row operations to change all values above and below the
marked pivot to 0.

4. Repeat these steps until the matrix is in RREF.

In particular, once a pivot is marked, it should remain in the same position. This will
keep you from undoing your progress towards an RREF matrix.



Row Reduction of Matrices (LE2)

Activity 1.2.14 Complete the following RREF calculation (multiple row operations may
be needed for certain steps):

A =

 2 3 2 3
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
0 ? ? ?
0 ? ? ?



∼

 1 ? ? ?

0 1 ? ?
0 ? ? ?

 ∼

 1 0 ? ?

0 1 ? ?
0 0 ? ?

 ∼ · · · ∼

 1 0 −2 0

0 1 2 0
0 0 0 1





Row Reduction of Matrices (LE2)

Activity 1.2.15 Consider the matrix

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Compute RREF(A).



Row Reduction of Matrices (LE2)

Activity 1.2.16 Consider the non-augmented and augmented matrices

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 B =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Can RREF(A) be used to find RREF(B)?

A. Yes, RREF(A) and RREF(B) are exactly the same.

B. Yes, RREF(A) may be slightly modified to find RREF(B).

C. No, a new calculation is required.



Row Reduction of Matrices (LE2)

Activity 1.2.17 Free browser-based technologies for mathematical computation are avail-
able online.

(a) Go to https://sagecell.sagemath.org/.

(b) In the dropdown on the right, you can select a number of different languages. Select
”Octave” for the Matlab-compatible syntax used by this text.

(c) Type rref([1,4,6;2,5,7]) and then press the Evaluate button to compute the RREF

of
[
1 4 6
2 5 7

]
.

(d) Now try using whitespace to write out the matrix and compute RREF instead:
A = [1 3 2

2 5 7]

rref(A)

https://sagecell.sagemath.org/


Row Reduction of Matrices (LE2)

Activity 1.2.18 Find three examples of linear systems for which the RREF of their aug-
mented matrices is equal to  1 4 2 −4

0 0 0 0
0 0 0 0





Row Reduction of Matrices (LE2)

Activity 1.2.19 Which of the following matrices are not in RREF?

A =

 1 0 2 −3
0 3 3 −3
0 0 0 1

 B =

 1 0 0 7
0 1 0 4
0 0 1 3

 C =

 1 0 0 4
0 1 0 7
0 0 0 4





Counting Solutions for Linear Systems (LE3)

1.3 Counting Solutions for Linear Systems (LE3)

Learning Outcomes
• Determine the number of solutions for a system of linear equations or a vector equation.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.1

(a) Without referring to your Activity Book, which of the four criteria for a matrix to be
in Reduced Row Echelon Form (RREF) can you recall?

(b) Which, if any, of the following matrices are in RREF? You may refer to the Activity
Book now for criteria that you may have forgotten.

P =

 1 0 2
3

−3
0 3 3 −3

5

0 0 0 0

 Q =

 0 1 0 7
1 0 0 4
0 0 0 0

 R =

 1 0 1
2

4
0 1 0 7
0 0 1 0





Counting Solutions for Linear Systems (LE3)

Remark 1.3.2 We will frequently need to know the reduced row echelon form of matrices
during the remainder of this course, so unless you’re told otherwise, feel free to use technology
(see Activity 1.2.17) to compute RREFs efficiently.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.3 Consider the following system of equations.

3x1 − 2x2 +13x3 = 6

2x1 − 2x2 +10x3 = 2

−x1 +3x2 − 6x3 =11

4x1 + x2 + x3 = 1.

(a) Convert this to an augmented matrix and use technology to compute its reduced row
echelon form:

RREF


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.4 Consider the vector equation

x1


3
2
−1
3

+ x2


−2
−2
0
7

+ x3


13
10
−3
0

 =


6
2
1
−2


(a) Convert this to an augmented matrix and use technology to compute its reduced row

echelon form:

RREF


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.5 What contradictory equations besides 0 = 1 may be obtained from the
RREF of an augmented matrix?

A. x = 0 is an obtainable contradiction

B. x = y is an obtainable contradiction

C. 0 = 17 is an obtainable contradiction

D. 0 = 1 is the only obtainable contradiction



Counting Solutions for Linear Systems (LE3)

Activity 1.3.6 Consider the following linear system.

x1 + 2x2 +3x3 = 1

2x1 + 4x2 +8x3 = 0

3x1 + 6x2+11x3 = 1

x1 + 2x2 +5x3 = −1

(a) Find its corresponding augmented matrix A and find RREF(A).

(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. One C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Fact 1.3.7 By finding RREF(A) from a linear system’s corresponding augmented matrix A,
we can immediately tell how many solutions the system has.

• If the linear system given by RREF(A) includes the contradiction

0 = 1,

that is, the RREF matrix includes the row[
0 · · · 0 1

]
,

then the system is inconsistent, which means it has zero solutions and we may write

Solution set = {} or Solution set = ∅.

• If the linear system given by RREF(A) sets every variable of the system to a specific
value; that is we have:

x1 = s1

x2 = s2
...

xn = sn

(with some possible extra 0 = 0 equations), then the system is consistent with exactly
one solution, and we may write

Solution =


s1
s2
...
sn

 but Solution set =




s1
s2
...
sn


 .

• Otherwise, the system given by the RREF matrix must not include a 0 = 1 contradiction
while at least one variable is not required to equal a specific value. This means it is
consistent with infinitely-many different solutions. We’ll learn how to find such solution
sets in Section 1.4.
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Activity 1.3.8 Consider each of the following systems of linear equations or vector equations.

(a)
x1 − x2 − 3 x3 = 8
3 x1 − 2 x2 − 5 x3 = 17
x1 − x2 − 2 x3 = 7

10 x1 − 8 x2 − 21 x3 = 65

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

(b)
x1 − 5 x2 − 15 x3 = −8

x2 + 3 x3 = 1
x1 = 2
5 x1 − 7 x2 − 21 x3 = −10

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

(c)
−2 x1 + 2 x2 + 5 x3 = 1
−x1 + x2 + 2 x3 = 1
2 x1 − 2 x2 + x3 = −7
−2 x1 + 2 x2 + 16 x3 = −10

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
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Activity 1.3.9

(a) In Fact 1.1.11, we stated, but did not prove the assertion that all linear systems are
one of the following:

(a) Consistent with one solution: its solution set contains a single vector, e.g.
 1

2
3


(b) Consistent with infinitely-many solutions: its solution set contains infinitely many

vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


(c) Inconsistent: its solution set is the empty set, denoted by either {} or ∅.

(b) Explain why this fact is a consequence of Fact 1.3.7 above.



Linear Systems with Infinitely-Many Solutions (LE4)

1.4 Linear Systems with Infinitely-Many Solutions (LE4)

Learning Outcomes
• Compute the solution set for a system of linear equations or a vector equation with

infinitely many solutions.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.1 Write down any three linear systems and determine if they are consistent,
have a single solution, or have infinitely many solutions.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.2 Consider this simplified linear system found to be equivalent to the system
from Activity 1.3.6:

x1 + 2x2 = 4

x3 = −1

0 = 0

0 = 0

Earlier, we determined this system has infinitely-many solutions, since x1 and x2 are not
required by the RREF matrix to equal specific values (even though x3 is).

(a) Let x1 = a and write the solution set in the form


 a

?
?

 ∣∣∣∣∣∣ a ∈ R

.

(b) Let x2 = b and write the solution set in the form


 ?

b
?

 ∣∣∣∣∣∣ b ∈ R

.

(c) Which of these was easier? What features of the RREF matrix


1 2 0 4

0 0 1 −1
0 0 0 0
0 0 0 0


caused this?
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Definition 1.4.3 Recall that the pivots of a matrix in RREF form are the leading 1s in
each non-zero row.

The pivot columns in an augmented matrix correspond to the bound variables in the
system of equations (x1, x3 below). The remaining variables are called free variables (x2

below). [
1 2 0 4

0 0 1 −1

]
To efficiently solve a system in RREF form, assign letters to the free variables, and then
solve for the bound variables. ♢



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.4 Find the solution set for the system

2x1 − 2x2 − 6x3 + x4 − x5 = 3

−x1 + x2 +3x3 − x4 +2x5 =−3

x1 − 2x2 − x3 + x4 + x5 = 2

by doing the following.

(a) Row-reduce its augmented matrix.

(b) Assign letters to the free variables (given by the non-pivot columns):

? = a

? = b

(c) Solve for the bound variables (given by the pivot columns) to show that

? = 1 + 5a+ 2b

? = 1 + 2a+ 3b

? = 3 + 3b

(d) Replace x1 through x5 with the appropriate expressions of a, b in the following set-
builder notation. 


x1

x2

x3

x4

x5


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R


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Remark 1.4.5 Don’t forget to correctly express the solution set of a linear system. Systems
with zero or one solutions may be written by listing their elements, while systems with
infinitely-many solutions may be written using set-builder notation.

• Inconsistent: ∅ or {}

◦ (not 0 or

 0
0
0

)

• Consistent with one solution: e.g.


 1

2
3


◦ (not just

 1
2
3

)

• Consistent with infinitely-many solutions: e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


◦ (not just

 1
2− 3a

a

 )
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Activity 1.4.6 Consider the following system of linear equations.

x1

 1
0
1

+ x2

 0
1
−1

+ x3

 −1
5
−5

+ x4

 −3
13
−13

 =

 −3
12
−12

 .

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.7 Consider the following system of linear equations.

x1 − 2 x3 = −3
5 x1 + x2 − 7 x3 = −18
5 x1 − x2 − 13 x3 = −12
x1 + 3 x2 + 7 x3 = −12

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.8 Consider the following linear system, its augmented matrix A, and RREF(A):

x1 − x2 + x3 = 4
x2 − 2 x3 = −1
x2 − 2 x3 = −3

x1 + 2 x2 − 5 x3 = 0

A =


1 −1 1 4
0 1 −2 −1
0 1 −2 −3
1 2 −5 0

 , RREF(A) =


1 0 −1 0
0 1 −2 0
0 0 0 1
0 0 0 0

 .

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix A is inconsistent.

(b) The linear system has two bound variables and one free variable.

(c) The solution set to the given linear system is {∅}.
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Activity 1.4.9 Consider the following linear system, its augmented matrix B, and
RREF(B):

2 x1 − 2 x2 − 8 x3 + 3 x4 − 9 x5 = −17
−x1 + x3 − x4 + 2 x5 = 6
2 x1 − x2 − 5 x3 + x4 − 5 x5 = −10
−x1 + 3 x2 + 10 x3 + 7 x5 = 6

B =


2 −2 −8 3 −9 −17
−1 0 1 −1 2 6
2 −1 −5 1 −5 −10
−1 3 10 0 7 6



RREF(B) =


1 0 −1 0 −1 −3
0 1 3 0 2 1
0 0 0 1 −1 −3
0 0 0 0 0 0

 .

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix B is consistent with infinitely many solutions.

(b) The solution set is given by


a+ b− 3

−3 a− 2 b+ 1
a

b− 3
b

.

(c) The variables x3, x5 are free. Setting them equal to a, b respectively and solv-
ing for the bound variables, the solution set to the linear system is given by
 a+ b− 3

−3 a− 2 b+ 1
b− 3

 ∣∣∣∣∣∣ a, b ∈ R

.



Chapter 2

Euclidean Vectors (EV)

Learning Outcomes
What is a space of Euclidean vectors?
By the end of this chapter, you should be able to...

1. Determine if a Euclidean vector can be written as a linear combination of a given set
of Euclidean vectors by solving an appropriate vector equation.

2. Determine if a set of Euclidean vectors spans Rm by solving appropriate vector equa-
tions.

3. Determine if a subset of Rn is a subspace or not.

4. Determine if a set of Euclidean vectors is linearly dependent or independent by solving
an appropriate vector equation.

5. Explain why a set of Euclidean vectors is or is not a basis of Rn.

6. Compute a basis for the subspace spanned by a given set of Euclidean vectors, and
determine the dimension of the subspace.

7. Find a basis for the solution set of a homogeneous system of equations.

64



Linear Combinations (EV1)

Readiness Assurance.
Before beginning this chapter, you should be able to...

1. Use set builder notation to describe sets of vectors.

• Review: YouTube1

2. Add Euclidean vectors and multiply Euclidean vectors by scalars.

• Review: Khan Academy (1)2 (2)3

3. Perform basic manipulations of augmented matrices and linear systems.

• Review: Section 1.1, Section 1.2, Section 1.3

2.1 Linear Combinations (EV1)

Learning Outcomes
• Determine if a Euclidean vector can be written as a linear combination of a given set

of Euclidean vectors by solving an appropriate vector equation.

1youtu.be/xnfUZ-NTsCE
2www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

adding-vectors
3www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

multiplying-vector-by-scalar

https://youtu.be/xnfUZ-NTsCE
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/adding-vectors
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/multiplying-vector-by-scalar


Linear Combinations (EV1)

Activity 2.1.1 Discuss which of the vectors u⃗ =

 1
−1
2

 and v⃗ =

 0
3
−1

 is a solution to

the given vector equation:

x1

 −1
2
3

+ x2

 2
−1
0

+ x3

 1
−1
1

 =

 −1
1
5





Linear Combinations (EV1)

Note 2.1.2 We’ve been working with Euclidean vector spaces of the form

Rn =




x1

x2
...
xn


∣∣∣∣∣∣∣∣∣ x1, x2, . . . , xn ∈ R

 .

There are other kinds of vector spaces as well (e.g. polynomials, matrices), which we will
investigate in Section 3.5. But understanding the structure of Euclidean vectors on their
own will be beneficial, even when we turn our attention to other kinds of vectors.
We will use the phrase vector space freely from this point on, even while delaying a formal

definition. Readers can choose to interpret this to mean Euclidean vector space, i.e Rn for
some n, if they wish; we do this as all of the statements we make using the term vector
space are also true for all vector spaces as defined in Definition 3.5.7.

Likewise, when we multiply a vector by a real number, as in −3

 1
−1
2

 =

 −3
3
−6

, we

refer to this real number as a scalar.
We often use letters like V and W to refer to vector spaces (Euclidean or otherwise)
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Definition 2.1.3 A linear combination of a set of vectors {v⃗1, v⃗2, . . . , v⃗n} is given by
c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n for any choice of scalar multiples c1, c2, . . . , cn.

For example, we can say

 3
0
5

 is a linear combination of the vectors

 1
−1
2

 and

 1
2
1


since  3

0
5

 = 2

 1
−1
2

+ 1

 1
2
1

 .

♢



Linear Combinations (EV1)

Definition 2.1.4 The span of a set of vectors is the collection of all linear combinations of
that set:

span{v⃗1, v⃗2, . . . , v⃗n} = {c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n | ci ∈ R} .
For example:

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R

 .

♢



Linear Combinations (EV1)

Activity 2.1.5 Consider span
{[

1
2

]}
.

(a) Sketch the four Euclidean vectors

1

[
1
2

]
=

[
1
2

]
, 3

[
1
2

]
=

[
3
6

]
, 0

[
1
2

]
=

[
0
0

]
, −2

[
1
2

]
=

[
−2
−4

]
in the same xy plane by drawing an arrow to the (x, y) coordinate associated with each
vector.

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane. Which of the following geometrical objects best describes this sketch?

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Activity 2.1.6 Consider span
{[

1
2

]
,

[
−1
1

]}
.

(a) Sketch the following five Euclidean vectors in the same xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
= ? 0

[
1
2

]
+ 1

[
−1
1

]
= ? 1

[
1
2

]
+ 1

[
−1
1

]
= ?

−2

[
1
2

]
+ 1

[
−1
1

]
= ? − 1

[
1
2

]
+−2

[
−1
1

]
= ?

(b) Correct the SageMath code cell below to generate an illustration of several vectors
belonging to

span
{[

1
2

]
,

[
−1
1

]}
=

{
a

[
1
2

]
+ b

[
−1
1

] ∣∣∣∣ a, b ∈ R
}

in the xy plane.

# create empty plot
p = plot ([])

# do this 100 times
for _ in range (100):

# pick random a value from -99 to 99
a = randrange (-99,100)
# pick random b value from -99 to 99
b = randrange (-99,100)
# plot random linear combination of two vectors based on a,b
p += plot(a*vector ([1 ,2])+b*vector ([FIXME]))

# display plot
show(p)

Based on this illustration, which of these geometrical objects best describes the span
of these two vectors?

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Activity 2.1.7 Sketch a representation of all the vectors belonging to
span

{[
6
−4

]
,

[
−3
2

]}
in the xy plane, or adapt the code in the previous activity

to illustrate this span.
Which of these geometrical objects best describes the span of these two vectors?

A. A line

B. A plane

C. A parabola

D. A cube



Linear Combinations (EV1)

Activity 2.1.8 Consider the following questions to discover whether a Euclidean vector
belongs to a span.

(a) The Euclidean vector

 −1
−6
1

 belongs to span


 1

0
−3

 ,

 −1
−3
2

 exactly when

there exists a solution to which of these vector equations?

A. x1

 −1
−6
1

+ x2

 1
0
−3

 =

 −1
−3
2


B. x1

 1
0
−3

+ x2

 −1
−3
2

 =

 −1
−6
1


C. x1

 −1
−3
2

+ x2

 −1
−6
1

+ x3

 1
0
−3

 = 0

(b) Use technology to find RREF of the corresponding augmented matrix, and then use
that matrix to find the solution set of the vector equation.

(c) Given this solution set, does

 −1
−6
1

 belong to span


 1

0
−3

 ,

 −1
−3
2

?
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Observation 2.1.9 The following are all equivalent statements:

• The vector b⃗ belongs to span{v⃗1, . . . , v⃗n}.

• The vector b⃗ is a linear combination of the vectors v⃗1, . . . , v⃗n.

• The vector equation x1v⃗1 + · · ·+ xnv⃗n = b⃗ is consistent.

• The linear system corresponding to
[
v⃗1 . . . v⃗n | b⃗

]
is consistent.

• RREF
[
v⃗1 . . . v⃗n | b⃗

]
doesn’t have a row [0 · · · 0 | 1] representing the contradiction 0 =

1.
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Activity 2.1.10 Consider the following claim: −6
2
−6

is a linear combination of the vectors

 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this
claim.

(b) Explain why the statement you wrote is true.

(c) Since your statement was true, use the solution set to describe a linear combination of 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

 that equals

 −6
2
−6

.
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Activity 2.1.11 Consider the following claim: −5
−1
−7

 belongs to span


 1

0
2

 ,

 3
0
6

 ,

 2
0
4

 ,

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this
claim.

(b) Explain why the statement you wrote is false, to conclude that the vector does not
belong to the span.



Linear Combinations (EV1)

Activity 2.1.12 Are the sets 
 1

−1
2

 ,

 1
2
1


and

span


 1

−1
2

 ,

 1
2
1


equal or nonequal to each other?

A. Equal B. Non-equal



Linear Combinations (EV1)

Remark 2.1.13 It is important to remember that

{v⃗1, v⃗2, . . . , v⃗n} ̸= span{v⃗1, v⃗2, . . . , v⃗n}.

For example, 
 1

−1
2

 ,

 1
2
1


is a set containing exactly two vectors, while

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R


is a set containing infinitely-many vectors. See the below Sage cell for an illustration.

v1 = vector ([1,-1,2])
v2 = vector ([1,2,1])

# illustrate set of two vectors

p = plot(v1)
p += plot(v2)
show(p)

# illustrate the *span* that set

p = plot ([])
for _ in range (1000):

a = randrange (-99 ,100)
b = randrange (-99 ,100)
p += plot(a*v1+b*v2)

show(p)
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Activity 2.1.14 Before next class, find some time to do the following:

(a) Without referring to your activity book, write down the definition of a linear combi-
nation of vectors.

(b) Let u⃗ =

 1
2
0

 and v⃗ =

 −1
3
0

. Write down an example w⃗1 =

 ?
?
?

 of a linear

combination of u⃗, v⃗. Then write down an example w⃗2 =

 ?
?
?

 that is not a linear

combination of u⃗, v⃗.

(c) Draw a rough sketch of the vectors u⃗ =

 1
2
0

, v⃗ =

 −1
3
0

, w⃗1 =

 ?
?
?

, and

w⃗2 =

 ?
?
?

 in R3.



Spanning Sets (EV2)

2.2 Spanning Sets (EV2)

Learning Outcomes
• Determine if a set of Euclidean vectors spans Rm by solving appropriate vector equa-

tions.



Spanning Sets (EV2)

Activity 2.2.1 Given a set of ingredients and a meal, a recipe is a list of amounts of each
ingredient required to prepare the given meal.

(a) Use the words vector and linear combination to create a new statement that is analo-
gous to one above.

(b) Building on your analogy, what role might the word span play?



Spanning Sets (EV2)

Observation 2.2.2 Any single non-zero vector/number x in R1 spans R1, since R1 =
{cx | c ∈ R}.

x0

Figure 1 An R1 vector



Spanning Sets (EV2)

Activity 2.2.3 How many vectors are required to span R2? Sketch a drawing in the xy
plane to support your answer.

Figure 2 The xy plane R2

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
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Activity 2.2.4 How many vectors are required to span R3?

Figure 3 R3 space

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
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Fact 2.2.5 At least m vectors are required to span Rm.

Figure 4 Failed attempts to span Rm by < m vectors
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Activity 2.2.6 Consider the question: Does every vector in R3 belong to

span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

?

(a) Determine if

 7
−3
−2

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(b) Given this result, do we now know whether every vector in R3 belongs to

span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

?

(c) Determine if

 0
−4
3

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(d) Determine if

 2
5
7

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(e) Fix the SageMath code below to visualize span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.
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# create empty plot
p = plot ([])

# define three vectors
v1 = vector ([1,-1,0])
v2 = vector(FIXME)
v3 = vector(FIXME)

# do this 100 times
for _ in range (100):

# choose random coefficients
a = randrange (-9,10)
b = randrange (-9,10)
c = randrange (-9,10)
# create linear combination
linear_combo = a*v1 + b*v2 + FIXME
# add it to the plot
p += plot(linear_combo)

# show the plot
show(p)
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Activity 2.2.7 We’d prefer a more methodical method to decide if every vector in Rn belongs
to some spanning set, compared to the guess-and-check methods we used in Activity 2.2.6.

(a) An arbitrary vector

 ?
?
?

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

 provided

the equation

x1

 1
−1
0

+ x2

 −2
0
1

+ x3

 −2
−2
2

 =

 ?
?
?


has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(b) We’re guaranteed at least one solution if the RREF of the corresponding augmented
matrix has no contradictions; likewise, we have no solutions if the RREF corresponds
to the contradiction 0 = 1. Given 1 −2 −2 ?

−1 0 −2 ?
0 1 2 ?

 ∼

 1 0 2 ?
0 1 2 ?
0 0 0 ?


we may conclude that the set does not span all of R3 because...

A. the row [0 1 2 | ? ] prevents a contradiction.
B. the row [0 1 2 | ? ] allows a contradiction.
C. the row [0 0 0 | ? ] prevents a contradiction.
D. the row [0 0 0 | ? ] allows a contradiction.
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Fact 2.2.8 The set {v⃗1, . . . , v⃗n} spans all of Rm exactly when the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

is consistent for every vector w⃗ ∈ Rm.
Likewise, the set {v⃗1, . . . , v⃗n} fails to span all of Rm exactly when the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

is inconsistent for some vector w⃗ ∈ Rm.
Note these two possibilities are decided based on whether or not the RREF of the vector

equation’s coefficient matrix (that is, RREF[v⃗1 . . . v⃗n]) has either all pivot rows, or at least
one non-pivot row (a row of zeroes): 1 −2 −2

−1 0 −2
0 1 2

 ∼

 1 0 2
0 1 2
0 0 0

 .
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Activity 2.2.9 Consider the set of vectors S =


2
3
0
−1

 ,


1
−4
3
0

 ,


1
7
−3
−1

 ,


0
3
5
7

 ,


3
13
7
16


 and the question “Does R4 = spanS?”

(a) Rewrite this question in terms of the solutions to a vector equation.

(b) Answer your new question, and use this to answer the original question.
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Activity 2.2.10 Let v⃗1, v⃗2, v⃗3 ∈ R7 be three Euclidean vectors, and suppose w⃗ is another
vector with w⃗ ∈ span {v⃗1, v⃗2, v⃗3}. What can you conclude about span {w⃗, v⃗1, v⃗2, v⃗3}?

A. span {w⃗, v⃗1, v⃗2, v⃗3} is larger than span {v⃗1, v⃗2, v⃗3}.

B. span {w⃗, v⃗1, v⃗2, v⃗3} is the same as span {v⃗1, v⃗2, v⃗3}.

C. span {w⃗, v⃗1, v⃗2, v⃗3} is smaller than span {v⃗1, v⃗2, v⃗3}.



Spanning Sets (EV2)

Activity 2.2.11 One of our important results in this lesson is Fact 2.2.5, which states that
a set of n vectors is required to span Rn. While we developed some geometric intuition for
why this true, we did not prove it in class. Before coming to class next time, follow the steps
outlined below to convince yourself of this fact using the concepts we learned in this lesson.

(a) Let {v⃗1, . . . , v⃗m} be a set of vectors living in Rn and assume that m < n. How many
rows and how many columns will the matrix [v⃗1 · · · v⃗m] have?

(b) Given no additional information about the vectors v⃗1, . . . , v⃗m, what is the maximum
possible number of pivots in RREF[v⃗1 . . . v⃗m]?

(c) Conclude that our given set of vector cannot span all of Rn.



Subspaces (EV3)

2.3 Subspaces (EV3)

Learning Outcomes
• Determine if a subset of Rn is a subspace or not.



Subspaces (EV3)

Activity 2.3.1 Consider the linear equation

x+ 2y + z = 0.

(a) Verify that both v⃗ =

 1
−1
1

 and w⃗ =

 1
0
−1

 are solutions.

(b) Is the vector 2v⃗ − 3w⃗ also a solution?



Subspaces (EV3)

Observation 2.3.2 Recall that if S = {v⃗1, . . . , v⃗n} is subset of vectors in Rn, then span(S)
is the set of all linear combinations of vectors in S. In EV2 (Section 2.2), we learned how to
decide whether span(S) was equal to all of Rn or something strictly smaller.



Subspaces (EV3)

Activity 2.3.3 Let’s consider the relationship between vectors within a spanning set.

(a) Let S denote a set of vectors in R3 and suppose that

 1
2
3

 ,

 4
5
6

 ∈ span(S). Which

of the following vectors might not belong to span(S)?

A.

 0
0
0


B.

 1
2
3

+

 4
5
6


C.

 1
2
3

+

 1
1
1


D. −2

 1
2
3


(b) More generally, let S denote a set of vectors in Rn and suppose that v⃗, w⃗ ∈ span(S)

and c ∈ R. Which of the following vectors must belong to span(S)?

A. 0⃗

B. v⃗ + w⃗

C. cv⃗

D. All of these
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Definition 2.3.4 A homogeneous system of linear equations is one of the form:

a11x1 + a12x2 + . . .+ a1nxn =0

a21x1 + a22x2 + . . .+ a2nxn =0

... ... ... ...
am1x1 + am2x2 + . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
... ... . . . ... ...

am1 am2 · · · amn 0


♢
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Activity 2.3.5 Consider an arbitrary homogeneous vector equation x1v⃗1 + · · ·+ xnv⃗n = 0⃗.

(a) Is this equation consistent?

A. No, it has no solutions.
B. Yes, it is guaranteed to have at least one solution.
C. More information is required.

(b) Suppose that

 1
2
3

 and

 4
5
6

 are both solutions to the homogeneous vector equation

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗. This means that

1v⃗1 + 2v⃗2 + 3v⃗3 = 0⃗ and 4v⃗1 + 5v⃗2 + 6v⃗3 = 0⃗.

Therefore by adding these equations:

(1 + 4)v⃗1 + (2 + 5)v⃗2 + (3 + 6)v⃗3 = 0⃗,

we may conclude that the vector

 1 + 4
2 + 5
3 + 6

 is...

A. another solution.
B. not a solution.
C. is equal to 0⃗.

(c) More generally, if

 a1
...
an

 and

 b1
...
bn

 are both solutions to x1v⃗1 + · · ·+ xnv⃗n = 0⃗, we

know that
a1v⃗1 + · · ·+ anv⃗n = 0⃗ and b1v⃗1 + · · ·+ bnv⃗n = 0⃗.

Therefore by adding these equations:

(a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n = 0⃗,

we may conclude that the vector

 a1 + b1
...

an + bn

 is...

A. another solution.
B. not a solution.
C. is equal to 0⃗.
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(d) Similarly, if

 a1
...
an

 is a solution and c ∈ R, we know first that

a1v⃗1 + · · ·+ anv⃗n = 0⃗

and by multiplying both sides by c we also know

(ca1)v⃗1 + · · ·+ (can)v⃗n = 0⃗.

Thus we may conclude that the vector

 ca1
...

can

 is...

A. another solution.
B. not a solution.
C. is equal to 0⃗.
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Observation 2.3.6 If S is any set of vectors in Rn, then the set span(S) has the following
properties:

• the set span(S) is non-empty.

• the set span(S) is “closed under addition”: for any u⃗, v⃗ ∈ span(S), the sum u⃗ + v⃗ is
also in span(S).

• the set span(S) is “closed under scalar multiplication”: for any u⃗ ∈ span(S) and scalar
c ∈ R, the product cu⃗ is also in span(S).

Likewise, if W is the solution set to a homogenous vector equation, it too satisfies:

• the set W is non-empty.

• the set W is “closed under addition”: for any u⃗, v⃗ ∈ W , the sum u⃗+ v⃗ is also in W .

• the set W is “closed under scalar multiplication” : for any u⃗ ∈ W and scalar c ∈ R,
the product cu⃗ is also in W .
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Definition 2.3.7 A subset W of a vector space is called a subspace provided that it satisfies
the following properties:

• the subset is non-empty.

• the subset is closed under addition: for any u⃗, v⃗ ∈ W , the sum u⃗+ v⃗ is also in W .

• the subset is closed under scalar multiplication: for any u⃗ ∈ W and scalar c ∈ R,
the product cu⃗ is also in W .

♢
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Observation 2.3.8 Note the similarities between a planar subspace spanned by two non-
colinear vectors in R3, and the Euclidean plane R2. While they are not the same thing (and
shouldn’t be referred to interchangeably), algebraists call such similar spaces isomorphic;
we’ll learn what this means more carefully in a later chapter.

4 2 2 4

4

2

2

4

Figure 5 A planar subset of R3 compared with the plane R2.
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Activity 2.3.9 To show that sets of Euclidean vectors form subspaces, we will need to prove
that certain equalities hold.

(a) Consider the following argument that 5 = 7:

5 = 7

⇒ 5− 6 = 7− 6

⇒ −1 = 1

⇒ (−1)2 = (1)2

⇒ 1 = 1

Is this reasoning valid?

A. Yes B. No

(b) Consider the following argument that 5 = 7:

1 = 1

⇒ (−1)2 = (1)2

⇒ −1 = 1

⇒ 5− 6 = 7− 6

⇒ 5 = 7

Is this reasoning valid?

A. Yes B. No
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Remark 2.3.10 Proofs of an equality LEFT = RIGHT should generally be of one of these
forms:

1. Using a chain of equalities:

LEFT = · · ·
= · · ·
= · · ·
= RIGHT

2. Using two chains of equalities:

LEFT = · · · RIGHT = · · ·
= · · · = · · ·
= · · · = · · ·
= SAME = SAME

3. Manipulating a known fact THIS = THAT into the desired equation:

THIS = THAT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ LEFT = RIGHT
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Activity 2.3.11 Let W =


 x

y
z

 ∣∣∣∣∣∣ x+ 2y + z = 0

. Consider the following questions to

prove that W is a subspace.

(a) Is W non-empty?

A. Yes. B. No.

(b) Let’s assume that u⃗ =

 x
y
z

 and v⃗ =

 a
b
c

 are in W . What equations are we

assuming to be true?

A. x+ 2y + z = 0.
B. a+ 2b+ c = 0.

C. Both of these.
D. Neither of these.

(c) Which equation must be verified to show that u⃗+ v⃗ =

 x+ a
y + b
z + c

 also belongs to W?

A. (x+ a) + 2(y + b) + (z + c) = 0.
B. x+ a+ 2y + b+ z + c = 0.
C. x+ 2y + z = a+ 2b+ c.

(d) Use your assumptions to complete the following proof of (x+a)+2(y+b)+(z+c) = 0.

(x+ a) + 2(y + b) + (z + c) = ?

= ( ? ) + ( ? )

= 0 + 0

= 0

(e) Have we proven W is a subspace of R3?

A. Yes B. Not yet

(f) Assume that u⃗ =

 x
y
z

 belongs to W , and c ∈ R. Which equation must be verified

to show that cu⃗ =

 cx
cy
cz

 also belongs to W?

A. (cx) + 2(cy) + (cz) = 0.
B. x+ 2y + z = c.
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C. x+ 2y + z + c = 0.

(g) Complete the following proof of (cx)+2(cy)+(cz) = 0 from the assumption x+2y+z =
0.

x+ 2y + z = 0

⇒ ? [x+ 2y + z] = ? [0]

⇒ ? = ?

⇒ (cx) + 2(cy) + (cz) = 0

(h) Have we proven W is a subspace of R3?

A. Yes B. Not yet
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Activity 2.3.12 Let W =


 x

y
z

 ∣∣∣∣∣∣ x+ 2y + z = 4

.

(a) Is W non-empty?

A. Yes. B. No.

(b) Which of these statements is valid?

A.

 1
1
1

 ∈ W , and

 2
2
2

 ∈ W , so W is a subspace.

B.

 1
1
1

 ∈ W , and

 2
2
2

 ∈ W , so W is not a subspace.

C.

 1
1
1

 ∈ W , but

 2
2
2

 ̸∈ W , so W is a subspace.

D.

 1
1
1

 ∈ W , but

 2
2
2

 ̸∈ W , so W is not a subspace.

(c) Which of these statements is valid?

(a)

 1
1
1

 ∈ W , and

 0
0
0

 ∈ W , so W is a subspace.

(b)

 1
1
1

 ∈ W , and

 0
0
0

 ∈ W , so W is not a subspace.

(c)

 1
1
1

 ∈ W , but

 0
0
0

 ̸∈ W , so W is a subspace.

(d)

 1
1
1

 ∈ W , but

 0
0
0

 ̸∈ W , so W is not a subspace.
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Remark 2.3.13 In summary, any one of the following is enough to prove that a nonempty
subset W is not a subspace:

• Show that W is empty. (Or even just show 0⃗ ̸∈ W .)

• Find specific values for u⃗, v⃗ ∈ W such that u⃗+ v⃗ ̸∈ W .

• Find specific values for c ∈ R, v⃗ ∈ W such that cv⃗ ̸∈ W .

If you cannot do any of these, then W can be proven to be a subspace by doing all of
the following:

1. Show that W is non-empty. (Usually by showing 0⃗ ∈ W .)

2. For all u⃗, v⃗ ∈ W (not just specific values), u⃗+ v⃗ ∈ W .

3. For all v⃗ ∈ W and c ∈ R (not just specific values), cv⃗ ∈ W .
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Activity 2.3.14 Consider these subsets of R3:

R =


 x

y
z

 ∣∣∣∣∣∣ y = z + 1

 S =


 x

y
z

 ∣∣∣∣∣∣ y = |z|

 T =


 x

y
z

 ∣∣∣∣∣∣ z = xy

 .

(a) Show R isn’t a subspace by showing that 0⃗ ̸∈ R.

(b) Show S isn’t a subspace by finding two vectors u⃗, v⃗ ∈ S such that u⃗+ v⃗ ̸∈ S.

(c) Show T isn’t a subspace by finding a vector v⃗ ∈ T such that 2v⃗ ̸∈ T .
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Activity 2.3.15 Consider the following two sets of Euclidean vectors:

U =

{[
x
y

]∣∣∣∣ 7 x+ 4 y = 0

}
W =

{[
x
y

]∣∣∣∣ 3 xy2 = 0

}
Explain why one of these sets is a subspace of R2 and one is not.
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Activity 2.3.16

(a) Consider the following attempted proof that

U =

{[
x
y

]∣∣∣∣x+ y = xy

}
is closed under scalar multiplication.

Let
[
x
y

]
∈ U , so we know that x + y = xy. We want to show k

[
x
y

]
=[

kx
ky

]
∈ U , that is, (kx)+(ky) = (kx)(ky). This is verified by the following

calculation:

(kx) + (ky) = (kx)(ky)

⇒ k(x+ y) = k2xy

⇒ 0[k(x+ y)] = 0[k2xy]

⇒ 0 = 0

Is this reasoning valid?

A. Yes B. No

(b) Does this fix the proof?

x+ y = xy

⇒ k(x+ y) = k(xy)

⇒ (kx) + (ky) = (kx)(ky)

A. Yes B. No
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Remark 2.3.17 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an analogy with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
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Activity 2.3.18

(a) Given the set of ingredients S = {flour, yeast, salt,water, sugar,milk}, how should we
think of the subspace span(S)?

(b) What is one meal that lives in the subspace span(S)?

(c) What is one meal that does not live in the subspace span(S)?
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Activity 2.3.19 Let

W =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + 2w

 .

The set W is a subspace. Below are two attempted proofs of the fact that W is closed under
vector addition. Both of them are invalid; explain why.

(a) Let u⃗ =


1
4
1
1

 , v⃗ =


2
−1
1
−1

 . Then both u⃗, v⃗ are elements of W . Their sum is

w⃗ =


3
3
2
0


and since

3 + 3 = 3 · (2) + 2 · (0),

it follows that w⃗ is also in W and so W is closed under vector addition.

(b) If


x
y
z
w

 ,


a
b
c
d

 are in W , we need to show that


x+ a
y + b
z + c
w + d

 is also in W. To be in W ,

we need
(x+ a) + (y + b) = 3(z + c) + 2(w + d).

Well, if
(x+ a) + (y + b) = 3(z + c) + 2(w + d),

then we know that
x+ y − 3z − 2w + a+ b− 3c− 2d = 0

by moving everything over to the left hand side. Since we are assuming that x + y −
3z− 2w = 0 and a+ b− 3c− 2d = 0, it follows that 0 = 0, which is true, which proves
that vector addition is closed.
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2.4 Linear Independence (EV4)

Learning Outcomes
• Determine if a set of Euclidean vectors is linearly dependent or independent by solving

an appropriate vector equation.
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Activity 2.4.1 Consider the vector equation

x1

 1
1
1

+ x2

 2
0
−1

+ x3

 −1
2
0

 =

 −1
7
4

 .

(a) Decide which of

 3
−1
2

 or

 1
1
1

 is a solution vector.

(b) Consider now the following vector equation:

y1

 1
1
1

+ y2

 2
0
−1

+ y3

 −1
2
0

+ y4

 −1
7
4

 = 0⃗.

How is this vector equation related to the original one?

(c) Use the solution vector you found in part (a) to construct a solution vector to this new
equation.
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Activity 2.4.2 Consider the two sets

S =


 2

3
1

 ,

 1
1
4

 T =


 2

3
1

 ,

 1
1
4

 ,

 −1
0

−11


where T contains a vector missing from S. Which of the following is true?

A. spanS contains a vector missing from spanT .

B. spanT contains a vector missing from spanS.

C. spanS and spanT contain the same vectors.
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Definition 2.4.3 We say that a set of vectors is linearly dependent if one vector in the
set belongs to the span of the others. Otherwise, we say the set is linearly independent.

Figure 6 A linearly dependent set of three vectors
You can think of linearly dependent sets as containing a redundant vector, in the sense

that you can drop a vector out without reducing the span of the set. In the above image, all
three vectors lay in the same planar subspace, but only two vectors are needed to span the
plane, so the set is linearly dependent. ♢
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Remark 2.4.4 In Activity 2.4.2 we had

S =


 2

3
1

 ,

 1
1
4

 ̸= T =


 2

3
1

 ,

 1
1
4

 ,

 −1
0

−11


different, while

spanS =

a

 2
3
1

+ b

 1
1
4

∣∣∣∣∣∣a, b ∈ R

 =

spanT =

a

 2
3
1

+ b

 1
1
4

+ c

 −1
0

−11

∣∣∣∣∣∣a, b, c ∈ R


were the same. This is possible because while S is linearly independent, T ’s third vector
made it linearly dependent:

1

 2
3
1

− 3

 1
1
4

 =

 −1
0

−11


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Activity 2.4.5 Consider the following three vectors in R3:

v⃗1 =

 −2
0
0

 , v⃗2 =

 1
3
0

 , and v⃗3 =

 −2
5
4

 .

(a) Let w⃗ = 3v⃗1 − v⃗2 − 5v⃗3 =

 ?
?
?

. The set {v⃗1, v⃗2, v⃗3, w⃗} is...

A. linearly dependent: at least one vector is a linear combination of others
B. linearly independent: no vector is a linear combination of others

(b) Find

RREF
[
v⃗1 v⃗2 v⃗3 w⃗

]
= RREF

 −2 1 −2 ?
0 3 5 ?
0 0 4 ?

 = ? .

What does this tell you about solution set for the vector equation x1v⃗1+x2v⃗2+x3v⃗3 = w⃗?

A. It is inconsistent.
B. It is consistent with one solution.
C. It is consistent with infinitely many solutions.

(c) Find

RREF
[
v⃗1 v⃗2 v⃗3 w⃗ 0⃗

]
= RREF

 −2 1 −2 ? 0
0 3 5 ? 0
0 0 4 ? 0

 = ? .

What does this tell you about solution set for the vector equation x1v⃗1 + x2v⃗2 + x3v⃗3 +
x4w⃗ = 0⃗?

A. It is inconsistent.
B. It is consistent with one solution.
C. It is consistent with infinitely many solutions.

(d) Which of the following is the best conclusion obtained when we solved x1v⃗1 + x2v⃗2 +
x3v⃗3 + x4w⃗ = 0⃗?

A. A pivot column in the augmented matrix RREF
[
v⃗1 v⃗2 v⃗3 w⃗ 0⃗

]
guarantees

the linear independence of {v⃗1, v⃗2, v⃗3, w⃗} by preventing contradictions.
B. A pivot column in the coefficient matrix RREF

[
v⃗1 v⃗2 v⃗3 w⃗

]
guarantees the

linear independence of {v⃗1, v⃗2, v⃗3, w⃗} by preventing contradictions.
C. A non-pivot column in the augmented matrix RREF

[
v⃗1 v⃗2 v⃗3 w⃗ 0⃗

]
guar-

antees the linear dependence of {v⃗1, v⃗2, v⃗3, w⃗} by describing a linear combination
of one vector in terms of the others.

D. A non-pivot column in the coefficient matrix RREF
[
v⃗1 v⃗2 v⃗3 w⃗

]
guarantees

the linear dependence of {v⃗1, v⃗2, v⃗3, w⃗} by describing a linear combination of one
vector in terms of the others.
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Fact 2.4.6 For any vector space, the set {v⃗1, . . . v⃗n} is linearly dependent if and only if the
vector equation x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗ is consistent with infinitely many solutions.

Likewise, the set of vectors {v⃗1, . . . v⃗n} is linearly independent if and only the vector
equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

has exactly one solution:

 x1
...
xn

 =

 0
...
0

.
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Activity 2.4.7 Find

RREF


2 2 3 −1 4 0
3 0 13 10 3 0
0 0 7 7 0 0
−1 3 16 14 1 0


and mark the part of the matrix that demonstrates that

S =




2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
1




is linearly dependent (the part that shows its linear system has infinitely many solutions).
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Activity 2.4.8

(a) Write a statement involving the solutions of a vector equation that’s equivalent to each
claim:

(i) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
2


 is linearly independent.”

(ii) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
2


 is linearly dependent.”

(b) Explain how to determine which of these statements is true.
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Observation 2.4.9 Compare the following results:

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly independent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has all pivot columns.

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly dependent if and only if RREF
[
v⃗1 . . . v⃗n

]
has at least one non-pivot column.

• A set of Rm vectors {v⃗1, . . . v⃗n} spans Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has all

pivot rows.

• A set of Rm vectors {v⃗1, . . . v⃗n} fails to span Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has at least one non-pivot row.
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Activity 2.4.10 What is the largest number of R4 vectors that can form a linearly indepen-
dent set?

A. 3

B. 4

C. 5

D. You can have infinitely many vectors
and still be linearly independent.
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Activity 2.4.11 Is it possible for the set of Euclidean vectors {v⃗1, v⃗2, . . . , v⃗n, 0⃗} to be linearly
independent?

A. Yes B. No
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Remark 2.4.12 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an analogy with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
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Activity 2.4.13 Consider the statement: The set of vectors {v⃗1, v⃗2, v⃗3} is linearly dependent
because the vector v⃗3 is a linear combination of v⃗1 and v⃗2. Construct an analogous statement
involving ingredients, meals, and recipes, using the terms linearly (in)dependent and linear
combination.
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Activity 2.4.14 The following exercises are designed to help develop your geometric intu-
ition around linear dependence.

(a) Draw sketches that depict the following:

• Three linearly independent vectors in R3.
• Three linearly dependent vectors in R3.

(b) If you have three linearly dependent vectors, is it necessarily the case that one of the
vectors is a multiple of the other?
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2.5 Identifying a Basis (EV5)

Learning Outcomes
• Explain why a set of Euclidean vectors is or is not a basis of Rn.
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Remark 2.5.1 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an analogy with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
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Activity 2.5.2 Consider the following set of ingredients:

S = {tomato, olive oil, dough, cheese, pizza sauce, garlic}

(a) Does ”pizza” live inside of span(S)?

(b) Identify which ingredients in S make the set linearly dependent.

(c) Can you think of a subset S ′ of S that is linearly independent and for which ”pizza”
is still in spanS ′?
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Activity 2.5.3 Consider the set of vectors

S =




3
−2
−1
0

 ,


2
4
1
1

 ,


0

−16
−5
−3

 ,


1
2
3
0

 ,


3
3
0
1


 .

(a) Given 
3 2 0 1 3 5
−2 4 −16 2 3 2
−1 1 −5 3 0 0
0 1 −3 0 1 1

 ∼


1 0 2 0 0 1
0 1 −3 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0



Express the vector


5
2
0
1

 as a linear combination of the vectors in S, i.e. find scalars

such that

?


3
−2
−1
0

+ ?


2
4
1
1

+ ?


0

−16
−5
−3

+ ?


1
2
3
0

+ ?


3
3
0
1

 =


5
2
0
1

 .

(b) Find a different way to express the vector


5
2
0
1

 as a linear combination of the vectors

in S:

?


3
−2
−1
0

+ ?


2
4
1
1

+ ?


0

−16
−5
−3

+ ?


1
2
3
0

+ ?


3
3
0
1

 =


5
2
0
1

 .

(c) Consider another vector


8
6
7
5

. Without computing the RREF of another matrix, do

we already know how many ways can this vector be written as a linear combination of
the vectors in S?

A. Yes, zero.
B. Yes, one.
C. Yes, infinitely-many.
D. No, computing a new matrix RREF is necessary.
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Activity 2.5.4 Let’s review some of the terminology we’ve been dealing with...

(a) If every vector in a vector space can be constructed as one or more linear combinations
of vectors in a set S, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(b) If the zero vector 0⃗ can be constructed as a unique linear combination of vectors in a
set S (the combination multiplying every vector by the scalar value 0), we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(c) If every vector of a vector space can either be constructed as a unique linear combination
of vectors in a set S, or not at all, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.
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Definition 2.5.5 A basis of a vector space V is a set of vectors S contained in V for which

1. Every vector in the vector space can be expressed as a linear combination of the vectors
in S.

2. For each vector v⃗ in the vector space, there is only one way to write it as a linear
combination of the vectors in S.

These two properties may be expressed more succinctly as the statement ”Every vector in V
can be expressed uniquely as a linear combination of the vectors in S”. ♢
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Observation 2.5.6 In terms of a vector equation, a set S = {v⃗1, . . . , v⃗n} is a basis of a
vector space if the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

has a unique solution for every vector w⃗ in the vector space.
Put another way, a basis may be thought of as a minimal set of “building blocks” that

can be used to construct any other vector of the vector space.
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Activity 2.5.7 Let S be a basis (Definition 2.5.5) for a vector space. Then...

A. the set S must both span the vector space and be linearly independent.

B. the set S must span the vector space but could be linearly dependent.

C. the set S must be linearly independent but could fail to span the vector space.

D. the set S could fail to span the vector space and could be linearly dependent.
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Activity 2.5.8 The vectors

î = (1, 0, 0) =

 1
0
0

 ĵ = (0, 1, 0) =

 0
1
0

 k̂ = (0, 0, 1) =

 0
0
1


form a basis {̂i, ĵ, k̂} used frequently in multivariable calculus.

Find the unique linear combination of these vectors

? î+ ? ĵ + ? k̂

that equals the vector

(3,−2, 4) =

 3
−2
4


in xyz space.
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Definition 2.5.9 The standard basis of Rn is the set {e⃗1, . . . , e⃗n} where

e⃗1 =



1
0
0
...
0
0


e⃗2 =



0
1
0
...
0
0


· · · e⃗n =



0
0
0
...
0
1


.

In particular, the standard basis for R3 is {e⃗1, e⃗2, e⃗3} = {̂i, ĵ, k̂}. ♢
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Activity 2.5.10 Use technology to find the RREF of an appropriate matrix and determine
if each of the following sets is a basis for R4. (Don’t forget to use format rat to nicely
format Octave’s output.)

(a) 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(b) 


2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(c) 


2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
2




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(d) 


2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5




A. A basis, because it both spans R4 and is linearly independent.
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B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(e) 


5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.
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Activity 2.5.11 If {v⃗1, v⃗2, v⃗3, v⃗4} is a basis for R4, that means RREF[v⃗1 v⃗2 v⃗3 v⃗4] has a pivot
in every row (because it spans), and has a pivot in every column (because it’s linearly
independent).

What is RREF[v⃗1 v⃗2 v⃗3 v⃗4]?

RREF[v⃗1 v⃗2 v⃗3 v⃗4] =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


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Fact 2.5.12 The set {v⃗1, . . . , v⃗m} is a basis for Rn if and only if m = n and RREF[v⃗1 . . . v⃗n] =
1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

.

That is, a basis for Rn must have exactly n vectors and its square matrix must row-reduce
to the so-called identity matrix containing all zeros except for a downward diagonal of
ones. (We will learn where the identity matrix gets its name in a later module.)
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Activity 2.5.13 Let S denote a set of vectors in Rn. Without referring to your Activity
Book, write down:

(a) The definition of what it means for S to be linearly independent.

(b) The definition of what it means for S to span Rn.

(c) The definition of what it means for S to be a basis for Rn.
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Activity 2.5.14 You are going on a trip and need to pack. Let S denote the set of items
that you are packing in your suitcase.

(a) Give an example of such a set of items S that you would say ”spans” everything you
need, but is linearly dependent.

(b) Give an example of such a set of items S that is linearly independent, but does not
”span” everything you need.

(c) Give an example of such a set S that you might reasonably consider to be a ”basis”
for what you need?
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2.6 Subspace Basis and Dimension (EV6)

Learning Outcomes
• Compute a basis for the subspace spanned by a given set of Euclidean vectors, and

determine the dimension of the subspace.
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Activity 2.6.1 Consider the set S of vectors in R4 given by

S =




2
3
0
1

 ,


2
0
1
−1




(a) Is the set S linearly independent or linearly dependent?

(b) How would you describe the subspace spanS geometrically?

(c) What do the spaces spanS and R2 have in common? In what ways do they differ?
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Observation 2.6.2 Recall from section Section 2.3 that a subspace of a vector space is
the result of spanning a set of vectors from that vector space.

Recall also that a linearly dependent set contains “redundant” vectors. For example, only
two of the three vectors in Figure 14 are needed to span the planar subspace.
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Activity 2.6.3 Consider the subspace of R4 given by W =

span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


.

(a) Mark the column of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s spanning set is

linearly dependent.

(b) What would be the result of removing the vector that gave us this column?

A. The set still spans W , and remains linearly dependent.
B. The set still spans W , but is now also linearly independent.
C. The set no longer spans W , and remains linearly dependent.
D. The set no longer spans W , but is now linearly independent.



Subspace Basis and Dimension (EV6)

Definition 2.6.4 Let W be a subspace of a vector space. A basis for W is a linearly
independent set of vectors that spans W (but not necessarily the entire vector space). ♢
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Observation 2.6.5 So given a set S = {v⃗1, . . . , v⃗m}, to compute a basis for the
subspace spanS, simply remove the vectors corresponding to the non-pivot columns of
RREF[v⃗1 . . . v⃗m]. For example, since

RREF

 1 2 0 1
2 4 −2 0
3 6 −2 1

 =

 1 2 0 1

0 0 1 1
0 0 0 0



the subspace W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
0
1

 has


 1

2
3

 ,

 0
−2
−2

 as a

basis.
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Activity 2.6.6

(a) Find a basis for spanS where

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 .

(b) Find a basis for spanT where

T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 .
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Observation 2.6.7 Even though we found different bases for them, spanS and spanT are
exactly the same subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T .

Thus the basis for a subspace is not unique in general.



Subspace Basis and Dimension (EV6)

Fact 2.6.8 Any non-trivial real vector space has infinitely-many different bases, but all the
bases for a given vector space are exactly the same size.

For example,

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
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Definition 2.6.9 The dimension of a vector space or subspace is equal to the size of any
basis for the vector space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3 because any
basis for R3 such as

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors. ♢
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Activity 2.6.10 Consider the following subspace W of R4:

W = span




1
0
0
−1

 ,


−2
0
0
2

 ,


−3
1
−5
5

 ,


12
−3
15
−18


 .

(a) Explain and demonstrate how to find a basis of W .

(b) Explain and demonstrate how to find the dimension of W .
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Activity 2.6.11 The dimension of a subspace may be found by doing what with an appro-
priate RREF matrix?

A. Count the rows.

B. Count the non-pivot columns.

C. Count the pivots.

D. Add the number of pivot rows and pivot columns.
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Activity 2.6.12 In Observation 2.6.5, we found a basis for the subspace

W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
0
1

 .

To do so, we use the results of the calculation:

RREF

 1 2 0 1
2 4 −2 0
3 6 −2 1

 =

 1 2 0 1

0 0 1 1
0 0 0 0



to conclude that the set


 1

2
3

 ,

 0
−2
−2

, the set of vectors corresponding to the pivot

columns of the RREF, is a basis for W .

(a) Explain why neither of the vectors

 1
0
0

 ,

 0
1
0

 are elements of W .

(b) Explain why this shows that, in general, when we calculate a basis for W =
span{v⃗1, . . . , v⃗n}, the pivot columns of RREF[v⃗1 . . . v⃗n] themselves do not form a basis
for W .
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2.7 Homogeneous Linear Systems (EV7)

Learning Outcomes
• Find a basis for the solution set of a homogeneous system of equations.
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Remark 2.7.1 Recall from Section 2.3 that a homogeneous system of linear equations is
one of the form:

a11x1 + a12x2 + . . .+ a1nxn =0

a21x1 + a22x2 + . . .+ a2nxn =0

... ... ... ...
am1x1 + am2x2 + . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
... ... . . . ... ...

am1 am2 · · · amn 0

 .
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Activity 2.7.2

(a) In Section 2.3, we observed that if

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

is a homogeneous vector equation, then:

• The zero vector 0⃗ is a solution;
• The sum of any two solutions is again a solution;
• Multiplying a solution by a scalar produces another solution.

(b) Based on this recollection, which of the following best describes the solution set to the
homogeneous equation?

A. A basis for Rn.
B. A subspace of Rn.
C. All of Rn.
D. The empty set.
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Activity 2.7.3 Consider the homogeneous system of equations

x1 +2x2 + x4 =0

2x1 +4x2 − x3 − 2x4 =0

3x1 +6x2 − x3 − x4 =0

(a) Find its solution set (a subspace of R4).

(b) Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .

(c) Which of these choices best describes the set of two vectors




?
?
?
?

 ,


?
?
?
?


 used

in this solution space?

A. The set is linearly dependent.
B. The set is linearly independent.
C. The set spans the solution space.
D. The set is a basis of the solution space.



Homogeneous Linear Systems (EV7)

Activity 2.7.4 Consider the homogeneous system of equations

2x1 +4x2 +2x3 − 3x4 +31x5 +2x6 − 16x7 =0

−1x1 − 2x2 +4x3 − x4 + 2x5 +9x6 + 3x7 =0

x1 +2x2 + x3 + x4 + 3x5 +6x6 + 7x7 =0

(a) Find its solution set (a subspace of R7).

(b) Rewrite this solution space in the form
a



?
?
?
?
?
?
?


+ b



?
?
?
?
?
?
?


+ c



?
?
?
?
?
?
?


+ d



?
?
?
?
?
?
?



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a, b, c, d ∈ R


.

(c) Which of these choices best describes the set of vectors



?
?
?
?
?
?
?


,



?
?
?
?
?
?
?


,



?
?
?
?
?
?
?


,



?
?
?
?
?
?
?




used in this solution space?

A. The set is linearly dependent.
B. The set is linearly independent.
C. The set spans the solution space.
D. The set is a basis for the solution space.
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Fact 2.7.5 The coefficients of the free variables in the solution space of a linear system
always yield linearly independent vectors that span the solution space.

Thus if
a



−2
1
0
0
0
0
0


+ b



−7
0
−1
5
1
0
0


+ c



−1
0
−3
−2
0
1
0


+ d



1
0
−2
−6
0
0
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a, b, c, d ∈ R


= span





−2
1
0
0
0
0
0


,



−7
0
−1
5
1
0
0


,



−1
0
−3
−2
0
1
0


,



1
0
−2
−6
0
0
1




is the solution space for a homogeneous system, then



−2
1
0
0
0
0
0


,



−7
0
−1
5
1
0
0


,



−1
0
−3
−2
0
1
0


,



1
0
−2
−6
0
0
1




is a basis for the solution space.
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Activity 2.7.6 Consider the homogeneous system of equations

x1 − 3x2 +2x3 =0

2x1 +6x2 +4x3 =0

x1 +6x2 − 4x3 =0

(a) Find its solution space.

(b) Which of these is the best choice of basis for this solution space?

A {} B {⃗0} C The basis does not ex-
ist
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Activity 2.7.7 To create a computer-animated film, an animator first models a scene as
a subset of R3. Then to transform this three-dimensional visual data for display on a two-
dimensional movie screen or television set, the computer could apply a linear transformation
that maps visual information at the point (x, y, z) ∈ R3 onto the pixel located at (x+ y, y−
z) ∈ R2.

(a) What homogeneous linear system describes the positions (x, y, z) within the original
scene that would be aligned with the pixel (0, 0) on the screen?

(b) Solve this system to describe these locations.
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Activity 2.7.8 Let S =




−2
1
0
0

 ,


−1
0
−4
1

 ,


1
0
−2
3


 and A =


−2 −1 1
1 0 0
0 −4 −2
0 1 3

 ; note

that

RREF(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 .

The following statements are all invalid for at least one reason. Determine what makes them
invalid and, suggest alternative valid statements that the author may have meant instead.

(a) The matrix A is linearly independent because RREF(A) has a pivot in each column.

(b) The matrix A does not span R4 because RREF(A) has a row of zeroes.

(c) The set of vectors S spans.

(d) The set of vectors S is a basis.



Chapter 3

Algebraic Properties of Linear Maps
(AT)

Learning Outcomes
How can we understand linear maps algebraically?
By the end of this chapter, you should be able to...

1. Determine if a map between Euclidean vector spaces is linear or not.

2. Translate back and forth between a linear transformation of Euclidean spaces and its
standard matrix, and perform related computations.

3. Compute a basis for the kernel and a basis for the image of a linear map, and verify
that the rank-nullity theorem holds for a given linear map.

4. Determine if a given linear map is injective and/or surjective.

5. Explain why a given set with defined addition and scalar multiplication does satisfy a
given vector space property, but nonetheless isn’t a vector space.

6. Answer questions about vector spaces of polynomials or matrices.
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Linear Transformations (AT1)

Readiness Assurance.
Before beginning this chapter, you should be able to...

1. State the definition of a spanning set, and determine if a set of Euclidean vectors
spans Rn.

• Review: Section 2.2

2. State the definition of linear independence, and determine if a set of Euclidean
vectors is linearly dependent or independent.

• Review: Section 2.4

3. State the definition of a basis, and determine if a set of Euclidean vectors is a
basis.

• Review: Section 2.5, Section 2.6

4. Find a basis of the solution space to a homogeneous system of linear equations.

• Review: Section 2.7

3.1 Linear Transformations (AT1)

Learning Outcomes
• Determine if a map between Euclidean vector spaces is linear or not.
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Activity 3.1.1

(a) What is our definition for a set S of vectors to be linearly independent?

(b) What specific calculation would you perform to test is a set S of Euclidean vectors is
linearly independent?



Linear Transformations (AT1)

Activity 3.1.2

(a) What is our definition for a set S of vectors in Rn to span Rn ?

(b) What specific calculation would you perform to test is a set S of Euclidean vectors
spans all of Rn ?
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Definition 3.1.3 A linear transformation (also called a linear map) is a map between
vector spaces that preserves the vector space operations. More precisely, if V and W are
vector spaces, a map T : V → W is called a linear transformation if

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V , and

2. T (cv⃗) = cT (v⃗) for any c ∈ R, and v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied before or after
the transformation without affecting the result. ♢



Linear Transformations (AT1)

Definition 3.1.4 Given a linear transformation T : V → W , V is called the domain of T
and W is called the co-domain of T .

v⃗

domain R3

Linear transformation T : R3 → R2

T (v⃗)

co-domain R2

Figure 7 A linear transformation with a domain of R3 and a co-domain of R2

♢
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Observation 3.1.5 One example of a linear transformation R3 → R2 is the projection of
three-dimensional data onto a two-dimensional screen, as is necessary for computer animation
in film or video games.

Figure 8 A projection of a 3D teapot onto a 2D screen
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Activity 3.1.6 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x− z
3y

]
.

(a) Compute the result of adding vectors before a T transformation:

T

 x
y
z

+

 u
v
w

 = T

 x+ u
y + v
z + w


A.

[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(b) Compute the result of adding vectors after a T transformation:

T

 x
y
z

+ T

 u
v
w

 =

[
x− z
3y

]
+

[
u− w
3v

]

A.
[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(c) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.

(d) Compute the result of scalar multiplication before a T transformation:

T

c

 x
y
z

 = T

 cx
cy
cz


A.

[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


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(e) Compute the result of scalar multiplication after a T transformation:

cT

 x
y
z

 = c

[
x− z
3y

]

A.
[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(f) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.
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Activity 3.1.7 Let S : R2 → R4 be given by

S

([
x
y

])
=


x+ y
x2

y + 3
y − 2x


(a) Compute

S

([
0
1

]
+

[
2
3

])
= S

([
2
4

])

A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(b) Compute

S

([
0
1

])
+ S

([
2
3

])
=


0 + 1
02

1 + 3
1− 20

+


2 + 3
22

3 + 3
3− 22



A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(c) Is S a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.
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Activity 3.1.8 Fill in the ? s, assuming T : R3 → R3 is linear:

T

 0
0
0

 = T

 ?

 1
1
1

 = ?T

 1
1
1

 =

 ?
?
?


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Remark 3.1.9 In summary, any one of the following is enough to prove that T : V → W is
not a linear transformation:

• Find specific values for v⃗, w⃗ ∈ V such that T (v⃗ + w⃗) ̸= T (v⃗) + T (w⃗).

• Find specific values for v⃗ ∈ V and c ∈ R such that T (cv⃗) ̸= cT (v⃗).

• Show T (⃗0) ̸= 0⃗.

If you cannot do any of these, then T can be proven to be a linear transformation by
doing both of the following:

1. For all v⃗, w⃗ ∈ V (not just specific values), T (v⃗ + w⃗) = T (v⃗) + T (w⃗).

2. For all v⃗ ∈ V and c ∈ R (not just specific values), T (cv⃗) = cT (v⃗).

(Note the similarities between this process and showing that a subset of a vector space
is or is not a subspace: Remark 2.3.14.)
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Activity 3.1.10

(a) Consider the following maps of Euclidean vectors P : R3 → R3 and Q : R3 → R3

defined by

P

 x
y
z

 =

 −2 x− 3 y − 3 z
3 x+ 4 y + 4 z
3 x+ 4 y + 5 z

 and Q

 x
y
z

 =

 x− 4 y + 9 z
y − 2 z

8 y2 − 3 xz

 .

Which do you suspect?

A. P is linear, but Q is not.
B. Q is linear, but P is not.

C. Both maps are linear.
D. Neither map is linear.

(b) Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
9 xy

]
.

Prove that S is not a linear transformation.

(c) Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
8 x− 6 y
6 x− 4 y

]
.

Prove that T is a linear transformation.



Linear Transformations (AT1)

Activity 3.1.11 Let f(x) = x3 − 1. Then, f : R → R is a function with domain and
codomain equal to R. Is f(x) is a linear transformation?



Linear Transformations (AT1)

Activity 3.1.12 Consider two vectors u⃗, v⃗ and their sum u⃗+ v⃗.

(a) Is it the case that rotating u⃗ + v⃗ about the origin by π
2
= 90◦ is the same as first

rotating each of u⃗, v⃗ and then adding them together?

(b) Is it the case that rotating 5u⃗ about the origin by π
2
= 90◦ is the same as first rotating

u⃗ by π
2
= 90◦ and then scaling by 5?

(c) Based on this, do you suspect that the transformation R : R2 → R2 given by rotating
vectors about the origin through an angle of π

2
= 90◦ is linear? Do you think there is

anything special about the angle π
2
= 90◦?



Linear Transformations (AT1)

Activity 3.1.13 In Activity 2.2.1, we made an analogy between vectors and linear combina-
tions with ingredients and recipes. Let us think of cooking as a transformation of ingredients.
In this analogy, would it be appropriate for us to consider ”cooking” to be a linear transfor-
mation or not? Describe your reasoning.



Standard Matrices (AT2)

3.2 Standard Matrices (AT2)

Learning Outcomes
• Translate back and forth between a linear transformation of Euclidean spaces and its

standard matrix, and perform related computations.



Standard Matrices (AT2)

Remark 3.2.1 Recall that a linear map T : V → W satisfies

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V .

2. T (cv⃗) = cT (v⃗) for any c ∈ R, v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied before or after
the transformation without affecting the result.



Standard Matrices (AT2)

Activity 3.2.2 Can you recall the following?

(a) Given a transformation, what do the terms domain and codomain mean?

(b) What does the notation T : V → W mean?



Standard Matrices (AT2)

Activity 3.2.3 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 3
0
0

?

A.
[
6
3

]

B.
[
−9
6

]
C.

[
−4
−2

]

D.
[

6
−4

]



Standard Matrices (AT2)

Activity 3.2.4 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 1
0
1

?

A.
[
2
1

]

B.
[

3
−1

]
C.

[
−1
3

]

D.
[

5
−8

]



Standard Matrices (AT2)

Activity 3.2.5 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 −2
0
−3

?

A.
[
2
1

]

B.
[

3
−1

]
C.

[
−1
3

]

D.
[

5
−8

]



Standard Matrices (AT2)

Activity 3.2.6 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What piece of information would help you compute

T

 0
4
−1

?

A. The value of T

 0
4
0

 =

[
−4
16

]
.

B. The value of T

 0
1
0

 =

[
−1
4

]
.

C. The value of T

 1
1
1

 =

[
−2
7

]
.

D. Any of the above.



Standard Matrices (AT2)

Observation 3.2.7 Since all three choices in Activity 3.2.6 create a spanning and lin-

early independent set along with

 1
0
0

 and

 0
0
1

, they each may be used to compute

T

 0
4
−1

:

T

 0
4
−1

 = T

 0
4
0

− T

 0
0
1

 =

[
−4
16

]
−

[
−3
2

]
=

[
−1
14

]

T

 0
4
−1

 = 4T

 0
1
0

− T

 0
0
1

 = 4

[
−1
4

]
−
[
−3
2

]
=

[
−1
14

]

T

 0
4
−1

 = 4T

 1
1
1

− 5T

 0
0
1

− 4T

 1
0
0


= 4

[
−2
7

]
− 5

[
−3
2

]
− 4

[
2
1

]
=

[
−8 + 15− 8
28− 10− 4

]
=

[
−1
14

]



Standard Matrices (AT2)

Fact 3.2.8 Consider any basis {⃗b1, . . . , b⃗n} for V . Since every vector v⃗ can be written as a
linear combination of basis vectors, v⃗ = x1⃗b1 + · · ·+ xn⃗bn, we may compute T (v⃗) as follows:

T (v⃗) = T (x1⃗b1 + · · ·+ xn⃗bn) = x1T (⃗b1) + · · ·+ xnT (⃗bn).

Therefore any linear transformation T : V → W can be defined by just describing the values
of T (⃗bi).

Put another way, the images of the basis vectors completely determine the transforma-
tion T .



Standard Matrices (AT2)

Definition 3.2.9 Since a linear transformation T : Rn → Rm is determined by its action on
the standard basis {e⃗1, . . . , e⃗n}, it is convenient to store this information in an m×n matrix,
called the standard matrix of T , given by [T (e⃗1) · · · T (e⃗n)].

For example, let T : R3 → R2 be the linear map determined by the following values for
T applied to the standard basis of R3.

T (e⃗1) = T

([
1
0
0

])
=

[
2
1

]
T (e⃗2) = T

([
0
1
0

])
=

[
−1
4

]
T (e⃗3) = T

([
0
0
1

])
=

[
−3
2

]
Then the standard matrix corresponding to T is

[
T (e⃗1) T (e⃗2) T (e⃗3)

]
=

[
2 −1 −3
1 4 2

]
.

♢



Standard Matrices (AT2)

Activity 3.2.10 Let T : R4 → R3 be the linear transformation given by

T (e⃗1) =

 0
3
−2

 T (e⃗2) =

 −3
0
1

 T (e⃗3) =

 4
−2
1

 T (e⃗4) =

 2
0
0


Write the standard matrix [T (e⃗1) · · · T (e⃗n)] for T .



Standard Matrices (AT2)

Activity 3.2.11 Let T : R3 → R2 be the linear transformation given by

T

 x
y
z

 =

[
x+ 3z

2x− y − 4z

]

(a) Compute T (e⃗1), T (e⃗2), and T (e⃗3).

(b) Find the standard matrix for T .



Standard Matrices (AT2)

Fact 3.2.12 Because every linear map T : Rn → Rm has a linear combination of the variables
in each component, and thus T (e⃗i) yields exactly the coefficients of xi, the standard matrix
for T is simply an array of the coefficients of the xi:

T




x
y
z
w


 =

[
ax+ by + cz + dw
ex+ fy + gz + hw

]
A =

[
a b c d
e f g h

]

Since the formula for a linear transformation T and its standard matrix A may both
be used to compute the transformation of a vector x⃗, we will often write T (x⃗) and Ax⃗
interchangeably:

T




x1

x2

x3

x4


 =

[
ax1 + bx2 + cx3 + dx4

ex1 + fx2 + gx3 + hx4

]
= A


x1

x2

x3

x4

 =

[
a b c d
e f g h

]
x1

x2

x3

x4





Standard Matrices (AT2)

Activity 3.2.13

(a) Explain and demonstrate how to compute the standard matrix for the linear transfor-
mation S : R2 → R4 given by

S

([
x1

x2

])
=


9 x1 − 2 x2

−3 x1

5 x1 − x2

−6 x2


by computing transformations of the standard basic vectors:

S(e⃗1) =


?
?
?
?

 S(e⃗2) =


?
?
?
?

 →


? ?
? ?
? ?
? ?


(b) Let T : R4 → R3 be the linear transformation given by the standard matrix −2 −4 2 −2

−4 3 −3 2
5 0 2 −6

 .

Explain and demonstrate how to compute T




−5
0
−3
−2


 by using the values of trans-

formed standard basic vectors:

T




−5
0
−3
−2


 = ?T (e⃗1) + ?T (e⃗2) + ?T (e⃗3) + ?T (e⃗4)



Standard Matrices (AT2)

Activity 3.2.14 Consider the linear transformation R : R2 → R2 given by rotating vectors
about the origin through an angle of π

4
= 45◦.

(a) If e⃗1, e⃗2 are the standard basis vectors of R2, calculate R(e⃗1), R(e⃗2).

(b) What is the standard matrix representing R?



Standard Matrices (AT2)

Activity 3.2.15 Consider the linear transformation S : R2 → R2 given by reflecting vectors
across the line x1 = x2.

(a) If e⃗1, e⃗2 are the standard basis vectors of R2, calculate S(e⃗1), S(e⃗2).

(b) What is the standard matrix representing S?



Image and Kernel (AT3)

3.3 Image and Kernel (AT3)

Learning Outcomes
• Compute a basis for the kernel and a basis for the image of a linear map, and verify

that the rank-nullity theorem holds for a given linear map.



Image and Kernel (AT3)

Activity 3.3.1 Consider the matrix A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

(a) The matrix A is the standard matrix of a linear transformation T . What is the domain
and the codomain of the transformation T?

(b) Describe how T transforms the standard basis vectors of the domain that you found
above.



Image and Kernel (AT3)

Activity 3.3.2 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R2 describes the set of all vectors that transform into 0⃗?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}



Image and Kernel (AT3)

Definition 3.3.3 Let T : V → W be a linear transformation, and let z⃗ be the additive
identity (the “zero vector”) of W . The kernel of T (also known as the null space of T ) is
an important subspace of V defined by

kerT =
{
v⃗ ∈ V

∣∣ T (v⃗) = z⃗
}

kerT

0⃗

Figure 9 The kernel of a linear transformation
♢



Image and Kernel (AT3)

Activity 3.3.4 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R3 describes kerT , the set of all vectors that transform into 0⃗?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

a
0

 ∣∣∣∣∣∣ a ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R





Image and Kernel (AT3)

Activity 3.3.5 Let T : R3 → R2 be the linear transformation given by the standard matrix

T

 x
y
z

 =

[
3x+ 4y − z
x+ 2y + z

]

(a) Set T

 x
y
z

 =

[
0
0

]
to find a linear system of equations whose solution set is the

kernel.

(b) Use RREF(A) to solve this homogeneous system of equations and find a basis for the
kernel of T .



Image and Kernel (AT3)

Activity 3.3.6 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 2x+ 4y + 2z − 4w
−2x− 4y + z + w
3x+ 6y − z − 4w

 .

Find a basis for the kernel of T .



Image and Kernel (AT3)

Activity 3.3.7 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R3 describes the set of all vectors that are the result of using T
to transform R2 vectors?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

b
0

 ∣∣∣∣∣∣ a, b ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R





Image and Kernel (AT3)

Definition 3.3.8 Let T : V → W be a linear transformation. The image of T is an
important subspace of W defined by

ImT =
{
w⃗ ∈ W

∣∣ there is some v⃗ ∈ V with T (v⃗) = w⃗
}

In the examples below, the left example’s image is all of R2, but the right example’s
image is a planar subspace of R3.

Figure 10 The image of a linear transformation
♢



Image and Kernel (AT3)

Activity 3.3.9 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R2 describes ImT , the set of all vectors that are the result of
using T to transform R3 vectors?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}



Image and Kernel (AT3)

Activity 3.3.10 Let T : R4 → R3 be the linear transformation given by the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 =
[
T (e⃗1) T (e⃗2) T (e⃗3) T (e⃗4)

]
.

Consider the question: Which vectors w⃗ in R3 belong to ImT?

(a) Determine if

 12
3
3

 belongs to ImT .

(b) Determine if

 1
1
1

 belongs to ImT .

(c) An arbitrary vector

 ?
?
?

 belongs to ImT provided the equation

x1T (e⃗1) + x2T (e⃗2) + x3T (e⃗3) + x4T (e⃗4) = w⃗

has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(d) Based on this, how do ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} relate to each other?

A. The set ImT contains span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} but is not equal to it.
B. The set span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} contains ImT but is not equal to it.
C. The set ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} are equal to each other.
D. There is no relation between these two sets.



Image and Kernel (AT3)

Observation 3.3.11 Let T : R4 → R3 be the linear transformation given by the standard
matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

Since the set


 3

−1
2

 ,

 4
1
1

 ,

 7
0
3

 ,

 1
2
−1

 spans ImT , we can obtain a basis for

ImT by finding RREFA =

 1 0 1 −1
0 1 1 1
0 0 0 0

 and only using the vectors corresponding to

pivot columns: 
 3

−1
2

 ,

 4
1
1

 .

In general, the column space of a matrix M refers to the subspace obtained by con-
sidering the span of its column vectors. Using this terminology, if the transformation T is
represented by the matrix A, then the image of T is the column space of A.



Image and Kernel (AT3)

Fact 3.3.12 Let T : Rn → Rm be a linear transformation with standard matrix A.

• The kernel of T is the solution set of the homogeneous system given by the augmented
matrix

[
A 0⃗

]
. Use the coefficients of its free variables to get a basis for the kernel

(as in Fact 2.7.5).

• The image of T is the span of the columns of A. Remove the vectors creating non-pivot
columns in RREFA to get a basis for the image (as in Observation 2.6.5).



Image and Kernel (AT3)

Activity 3.3.13 Let T : R3 → R4 be the linear transformation given by the standard matrix

A =


1 −3 2
2 −6 0
0 0 1
−1 3 1

 .

Find a basis for the kernel and a basis for the image of T .



Image and Kernel (AT3)

Activity 3.3.14 Let T : Rn → Rm be a linear transformation with standard matrix A.
Which of the following is equal to the dimension of the kernel of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows



Image and Kernel (AT3)

Activity 3.3.15 Let T : Rn → Rm be a linear transformation with standard matrix A.
Which of the following is equal to the dimension of the image of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows



Image and Kernel (AT3)

Observation 3.3.16 Combining these with the observation that the number of columns is
the dimension of the domain of T , we have the rank-nullity theorem:

The dimension of the domain of T equals dim(kerT ) + dim(ImT ).

The dimension of the image is called the rank of T (or A) and the dimension of the kernel
is called the nullity.



Image and Kernel (AT3)

Activity 3.3.17 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x− y + 5 z + 3w
−x− 4 z − 2w
y − 2 z − w

 .

(a) Explain and demonstrate how to find the image of T and a basis for that image.

(b) Explain and demonstrate how to find the kernel of T and a basis for that kernel.

(c) Explain and demonstrate how to find the rank and nullity of T , and why the rank-
nullity theorem holds for T .



Image and Kernel (AT3)

Activity 3.3.18 In this section, we’ve introduced two important subspaces that are associ-
ated with a linear transformation T : V → W , namely: ImT , the image of T , and kerT , the
kernel of T . The following sequence is designed to help you internalize these definitions. Try
to complete them without referring to your Activity Book, and then check your answers.

(a) One of kerT and ImT is a subspace of the domain and the other is a subspace of the
codomain. Which is which?

(b) Write down the precise definitions of these subspaces.

(c) How would you describe these definitions to a layperson?

(d) What picture, or other study strategy would be helpful to you in conceptualizing how
these definitions fit together?



Image and Kernel (AT3)

Activity 3.3.19 We can use our notation of span in relation to a matrix, not just in relation
to a set of vectors. Given a matrix M

• the span of the set of all columns is the column space

• the span of the set of all rows is the row space

Let M =

 1 −1 0
2 2 4
−1 0 −1


Is

 2
1
3

 in the column space of M? Is it in the row space of M?

A. Yes.

B. No.

Is

 1
10
−3

 in the column space of M? Is it in the row space of M?

A. Yes.

B. No.

Let N =

 1 −1 1
2 2 −3
−1 0 −1


Are the row space and column space of N both equal to R3?

A. Yes.

B. No.



Injective and Surjective Linear Maps (AT4)

3.4 Injective and Surjective Linear Maps (AT4)

Learning Outcomes
• Determine if a given linear map is injective and/or surjective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.1 Consider the linear transformation T : R4 → R3 that is represented by the

standard matrix A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 . Which of the following processes helps us compute

a basis for ImT and which helps us compute a basis for kerT?

A. Compute RREF(A) and consider the set of columns of A that correspond to columns
in RREF(A) with pivots.

B. Calculate a basis for the solution space to the homogenous system of equations for
which A is the coefficient matrix.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.2 Let T : V → W be a linear transformation. T is called injective or
one-to-one if T does not map two distinct vectors to the same place. More precisely, T is
injective if T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

v⃗

w⃗

T (v⃗)
T (w⃗)

injective

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective

Figure 11 An injective transformation and a non-injective transformation
♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.3 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

C. No, because T

 0
0
1

 ̸= T

 0
0
2

.

D. No, because T

 0
0
1

 = T

 0
0
2

.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.4 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

C. No, because T

([
1
2

])
̸= T

([
3
4

])
.

D. No, because T

([
1
2

])
= T

([
3
4

])
.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.5 Let T : V → W be a linear transformation. T is called surjective or
onto if every element of W is mapped to by an element of V . More precisely, for every
w⃗ ∈ W , there is some v⃗ ∈ V with T (v⃗) = w⃗.

surjective not surjective

Figure 12 A surjective transformation and a non-surjective transformation
♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.6 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T surjective?

A. Yes, because for every w⃗ =

 x
y
z

 ∈ R3, there exists v⃗ =

[
x
y

]
∈ R2 such that

T (v⃗) = w⃗.

B. No, because T

([
x
y

])
can never equal

 1
1
1

.

C. No, because T

([
x
y

])
can never equal

 0
0
0

.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.7 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T surjective?

A. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 x
y
42

 ∈ R3 such that

T (v⃗) = w⃗.

B. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 0
0
z

 ∈ R3 such that

T (v⃗) = w⃗.

C. No, because T

 x
y
z

 can never equal
[

3
−2

]
.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.8 Let T : V → W be a linear transformation where kerT contains multiple
vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective



Injective and Surjective Linear Maps (AT4)

Fact 3.4.9 A linear transformation T is injective if and only if kerT = {⃗0}. Put another
way, an injective linear transformation may be recognized by its trivial kernel.

v⃗

w⃗

0⃗ T (v⃗)
T (w⃗)

T (⃗0) = 0⃗

Figure 13 A linear transformation with trivial kernel, which is therefore injective



Injective and Surjective Linear Maps (AT4)

Activity 3.4.10 Let T : V → R3 be a linear transformation where ImT may be spanned
by only two vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective



Injective and Surjective Linear Maps (AT4)

Fact 3.4.11 A linear transformation T : V → W is surjective if and only if ImT = W . Put
another way, a surjective linear transformation may be recognized by its identical codomain
and image.

surjective, ImT = R2 not surjective, ImT ̸= R3

Figure 14 A linear transformation with identical codomain and image, which is therefore
surjective; and a linear transformation with an image smaller than the codomain R3, which
is therefore not surjective.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.12 A transformation that is both injective and surjective is said to be
bijective. ♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.13 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. The kernel of T is trivial, i.e. kerT = {⃗0}.

2. The image of T equals its codomain, i.e. ImT = Rm.

3. For every w⃗ ∈ Rm, the set {v⃗ ∈ Rn|T (v⃗) = w⃗} contains exactly one vector.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.14 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. The columns of A span Rm.

2. The columns of A form a basis for Rm.

3. The columns of A are linearly independent.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.15 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. RREF(A) is the identity matrix.

2. Every column of RREF(A) has a pivot.

3. Every row of RREF(A) has a pivot.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.16 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. The system of linear equations given by the augmented matrix
[
A b⃗

]
has a solution

for all b⃗ ∈ Rm.

2. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly

one solution for all b⃗ ∈ Rm.

3. The system of linear equations given by the augmented matrix
[
A 0⃗

]
has exactly

one solution.



Injective and Surjective Linear Maps (AT4)

Observation 3.4.17 The easiest way to determine if the linear map with standard matrix
A is injective is to see if RREF(A) has a pivot in each column.

The easiest way to determine if the linear map with standard matrix A is surjective is to
see if RREF(A) has a pivot in each row.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.18 What can you conclude about the linear map T : R2 → R3 with standard

matrix

 a b
c d
e f

?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.19 What can you conclude about the linear map T : R3 → R2 with standard
matrix

[
a b c
d e f

]
?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.



Injective and Surjective Linear Maps (AT4)

Fact 3.4.20 The following are true for any linear map T : V → W :

• If dim(V ) > dim(W ), then T is not injective.

• If dim(V ) < dim(W ), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing vectors into
each other, and a linear transformation cannot increase dimension from its domain to its
image.

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective, 3 > 2 not surjective, 2 < 3

Figure 15 A linear transformation whose domain has a larger dimension than its codomain,
and is therefore not injective; and a linear transformation whose domain has a smaller
dimension than its codomain, and is therefore not surjective.

But dimension arguments cannot be used to prove a map is injective or surjective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.21 Suppose T : Rn → R4 with standard matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
a41 a42 · · · a4n

 is

bijective.

(a) How many pivot rows must RREFA have?

(b) How many pivot columns must RREFA have?

(c) What is RREFA?



Injective and Surjective Linear Maps (AT4)

Activity 3.4.22 Let T : Rn → Rn be a bijective linear map with standard matrix A. Label
each of the following as true or false.

A. RREF(A) is the identity matrix.

B. The columns of A form a basis for Rn

C. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly

one solution for each b⃗ ∈ Rn.



Injective and Surjective Linear Maps (AT4)

Observation 3.4.23 The easiest way to show that the linear map with standard matrix A
is bijective is to show that RREF(A) is the identity matrix.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.24 Let T : R3 → R3 be given by the standard matrix

A =

 2 1 −1
4 1 1
6 2 1

 .

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.25 Let T : R3 → R3 be given by

T

 x
y
z

 =

 2x+ y − z
4x+ y + z
6x+ 2y

 .

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.26 Let T : R2 → R3 be given by

T

([
x
y

])
=

 2x+ 3y
x− y
x+ 3y

 .

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.27 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
2x+ y − z
4x+ y + z

]
.

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.28 Let T : Rn → Rm be a linear transformation with standard matrix A. We
reasoned during class that the following statements are logically equivalent:

1. The columns of A are linearly independent.

2. RREF(A) has a pivot in each column.

3. The transformation T is injective.

4. The system of equations given by [A|⃗0] has a unique solution.

While they are all logically equivalent, they are different statements that offer varied per-
spectives on our growing conceptual knowledge of linear algebra.

(a) If you are asked to decide if a transformation T is injective, which of the above state-
ments do you think is the most useful?

(b) Can you think of some situations in which translating between these four statements
might be useful to you?



Injective and Surjective Linear Maps (AT4)

Activity 3.4.29 Let T : Rn → Rm be a linear transformation with standard matrix A. We
reasoned during class that the following statements are logically equivalent:

1. The columns of A span all of Rm.

2. RREF(A) has a pivot in each row.

3. The transformation T is surjective.

4. The system of equations given by [A|⃗b] is always consistent.

While they are all logically equivalent, they are different statements that offer varied per-
spectives on our growing conceptual knowledge of linear algebra.

(a) If you are asked to decide if a transformation T is surjective, which of the above
statements do you think is the most useful?

(b) Can you think of some situations in which translating between these four statements
might be useful to you?



Vector Spaces (AT5)

3.5 Vector Spaces (AT5)

Learning Outcomes
• Explain why a given set with defined addition and scalar multiplication does satisfy a

given vector space property, but nonetheless isn’t a vector space.



Vector Spaces (AT5)

Activity 3.5.1

(a) How would you describe a sandwich to someone who has never seen a sandwich before?

(b) How would you describe to someone what a vector is?



Vector Spaces (AT5)

Observation 3.5.2 Consider the following applications of properties of the real numbers R:

1. 1 + (2 + 3) = (1 + 2) + 3.

2. 7 + 4 = 4 + 7.

3. There exists some ? where 5 + ? = 5.

4. There exists some ? where 9 + ? = 0.

5. 1
2
(1 + 7) is the only number that is equally distant from 1 and 7.



Vector Spaces (AT5)

Activity 3.5.3 Which of the following properties of R2 Euclidean vectors is NOT true?

A.
[
x1

x2

]
+

([
y1
y2

]
+

[
z1
z2

])
=

([
x1

x2

]
+

[
y1
y2

])
+

[
z1
z2

]
.

B.
[
x1

x2

]
+

[
y1
y2

]
=

[
y1
y2

]
+

[
x1

x2

]
.

C. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
x1

x2

]
.

D. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
0
0

]
.

E. 1

2

([
x1

x2

]
+

[
y1
y2

])
is the only vector whose endpoint is equally distant from the

endpoints of
[
x1

x2

]
and

[
y1
y2

]
.



Vector Spaces (AT5)

Observation 3.5.4 Consider the following applications of properties of the real numbers R:

1. 3(2(7)) = (3 · 2)(7).

2. 1(19) = 19.

3. There exists some ? such that ? · 4 = 9.

4. 3 · (2 + 8) = 3 · 2 + 3 · 8.

5. (2 + 7) · 4 = 2 · 4 + 7 · 4.



Vector Spaces (AT5)

Activity 3.5.5 Which of the following properties of R2 Euclidean vectors is NOT true?

A. a

(
b

[
x1

x2

])
= ab

[
x1

x2

]
.

B. 1

[
x1

x2

]
=

[
x1

x2

]
.

C. There exists some ? such that ?

[
x1

x2

]
=

[
y1
y2

]
.

D. a(u⃗+ v⃗) = au⃗+ av⃗.

E. (a+ b)v⃗ = av⃗ + bv⃗.



Vector Spaces (AT5)

Fact 3.5.6 Every Euclidean vector space Rn satisfies the following properties, where u⃗, v⃗, w⃗
are Euclidean vectors and a, b are scalars.

1. Vector addition is associative: u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

2. Vector addition is commutative: u⃗+ v⃗ = v⃗ + u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ + z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ + (−v⃗) = z⃗.

5. Scalar multiplication is associative: a(bv⃗) = (ab)v⃗.

6. 1 is a multiplicative identity: 1v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a(u⃗+ v⃗) = (au⃗) + (av⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)v⃗ = (av⃗) + (bv⃗).



Vector Spaces (AT5)

Definition 3.5.7 A vector space V is any set of mathematical objects, called vectors,
and a set of numbers, called scalars, with associated addition ⊕ and scalar multiplication ⊙
operations that satisfy the following properties. Let u⃗, v⃗, w⃗ be vectors belonging to V , and
let a, b be scalars.
We always assume the codomain of our operations is V , i.e. that addition is a map V ×V →
V and that scalar multiplication is a map R× V → V .

Likewise, we only consider “real” vector spaces, i.e. those whose scalars come from R.
However, one can similarly define vector spaces with scalars from other fields like the complex
or rational numbers.

1. Vector addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗.

2. Vector addition is commutative: u⃗⊕ v⃗ = v⃗ ⊕ u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ ⊕ z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ ⊕ (−v⃗) = z⃗.

5. Scalar multiplication is associative: a⊙ (b⊙ v⃗) = (ab)⊙ v⃗.

6. 1 is a multiplicative identity: 1⊙ v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a⊙ (u⃗⊕ v⃗) = (a⊙ u⃗)⊕ (a⊙ v⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)⊙ v⃗ = (a⊙ v⃗)⊕ (b⊙ v⃗).

♢



Vector Spaces (AT5)

Remark 3.5.8 Consider the set C of complex numbers with the usual definition for addition:
(a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i.

Let u⃗ = a+ bi, v⃗ = c+ di, and w⃗ = e+ f i. Then

u⃗⊕ (v⃗ ⊕ w⃗) = (a+ bi)⊕ ((c+ di)⊕ (e+ f i))
= (a+ bi)⊕ ((c+ e) + (d+ f)i)
= (a+ c+ e) + (b+ d+ f)i

(u⃗⊕ v⃗)⊕ w⃗ = ((a+ bi)⊕ (c+ di))⊕ (e+ f i)
= ((a+ c) + (b+ d)i)⊕ (e+ f i)
= (a+ c+ e) + (b+ d+ f)i

This proves that complex addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗. The seven
other vector space properties may also be verified, so C is an example of a vector space.



Vector Spaces (AT5)

Remark 3.5.9 The following sets are just a few examples of vector spaces, with the usual/
natural operations for addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• C: Complex numbers.

• Mm,n: Matrices of real numbers with m rows and n columns.

• Pn: Polynomials of degree n or less.

• P : Polynomials of any degree.

• C(R): Real-valued continuous functions.



Vector Spaces (AT5)

Activity 3.5.10 Consider the set V = {(x, y) | y = 2x}.
Which of the following vectors is not in V ?

A. (0, 0)

B. (1, 2)

C. (2, 4)

D. (3, 8)



Vector Spaces (AT5)

Activity 3.5.11 Consider the set V = {(x, y) | y = 2x} with the operation ⊕ defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2).

Let u⃗, v⃗ be in V with u⃗ = (1, 2) and v⃗ = (2, 4). Using the operations defined for V , which
of the following is u⃗⊕ v⃗?

A. (2, 6)

B. (2, 8)

C. (3, 6)

D. (3, 8)



Vector Spaces (AT5)

Activity 3.5.12 Consider the set V = {(x, y) | y = 2x} with operations ⊕,⊙ defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc).

Let a = 2, b = −3 be scalars and u⃗ = (1, 2) ∈ V .

(a) Verify that

(a+ b)⊙ u⃗ =

(
−1,

1

2

)
.

(b) Compute the value of
(a⊙ u⃗)⊕ (b⊙ u⃗) .



Vector Spaces (AT5)

Activity 3.5.13 Consider the set V = {(x, y) | y = 2x} with operations ⊕,⊙ defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc).

Let a, b be unspecified scalars in R and u⃗ = (x, y) be an unspecified vector in V .

(a) Show that both sides of the equation

(a+ b)⊙ (x, y) = (a⊙ (x, y))⊕ (b⊙ (x, y))

simplify to the expression (ax+ bx, yayb).

(b) Show that V contains an additive identity element z⃗ = ( ? , ? ) satisfying

(x, y)⊕ ( ? , ? ) = (x, y)

for all (x, y) ∈ V .
That is, pick appropriate values for z⃗ = ( ? , ? ) and then simplify (x, y)⊕ ( ? , ? ) into
just (x, y).

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Vector Spaces (AT5)

Remark 3.5.14 It turns out V = {(x, y) | y = 2x} with operations ⊕,⊙ defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc)

satisfies all eight properties from Definition 3.5.7.
Thus, V is a vector space.



Vector Spaces (AT5)

Activity 3.5.15 Let V = {(x, y) | x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + y1 + x2 + y2, x
2
1 + x2

2)

c⊙ (x, y) = (xc, y + c− 1).

(a) Show that 1 is the scalar multiplication identity element by simplifying 1 ⊙ (x, y) to
(x, y).

(b) Show that V does not have an additive identity element z⃗ = (z, w) by showing that
(0,−1)⊕ (z, w) ̸= (0,−1) no matter what the values of z, w are.

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Vector Spaces (AT5)

Activity 3.5.16 Let V = {(x, y) | x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + 3y2) c⊙ (x, y) = (cx, cy).

(a) Show that scalar multiplication distributes over vector addition, i.e.

c⊙ ((x1, y1)⊕ (x2, y2)) = c⊙ (x1, y1)⊕ c⊙ (x2, y2)

for all c ∈ R, (x1, y1), (x2, y2) ∈ V .

(b) Show that vector addition is not associative, i.e.

(x1, y1)⊕ ((x2, y2)⊕ (x3, y3)) ̸= ((x1, y1)⊕ (x2, y2))⊕ (x3, y3)

for some vectors (x1, y1), (x2, y2), (x3, y3) ∈ V .

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Vector Spaces (AT5)

Activity 3.5.17

(a) What are some objects that are important to you personally, academically, or otherwise
that appear vector-like to you? What makes them feel vector-like? Which axiom for
vector spaces does not hold for these objects, if any?

(b) Our vector space axioms have eight properties. While these eight properties are enough
to capture vectors, the objects that we study in the real world often have additional
structures not captured by these axioms. What are some structures that you have
encountered in other classes, or in previous experiences, that are not captured by these
eight axioms?



Polynomial and Matrix Spaces (AT6)

3.6 Polynomial and Matrix Spaces (AT6)

Learning Outcomes
• Answer questions about vector spaces of polynomials or matrices.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.1 Consider the following vector equation and statements about it:

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = w⃗

1. The above vector equation is consistent for every choice of w⃗.

2. When the right hand is equal to 0⃗, the equation has a unique solution.

3. The given equation always has a unique solution, no matter what w⃗ is.

Which, if any, of these statements make sense if we no longer assume that the vectors
v⃗1, . . . , v⃗n are Euclidean vectors, but rather elements of a vector space?



Polynomial and Matrix Spaces (AT6)

Observation 3.6.2 Nearly every term we’ve defined for Euclidean vector spaces Rn was
actually defined for all kinds of vector spaces:

• Definition 2.1.3

• Definition 2.1.4

• Definition 2.3.7

• Definition 2.4.3

• Definition 2.5.5

• Definition 3.1.3

• Definition 3.1.4

• Definition 3.3.3

• Definition 3.3.8

• Definition 3.4.2

• Definition 3.4.5

• Definition 3.4.12



Polynomial and Matrix Spaces (AT6)

Activity 3.6.3 Let V be a vector space with the basis {v⃗1, v⃗2, v⃗3}. Which of these completes
the following definition for a bijective linear map T : V → R3?

T (v⃗) = T (av⃗1 + bv⃗2 + cv⃗3) = ? e⃗1 + ? e⃗2 + ? e⃗3 =

 ?
?
?



A. 0e⃗1 + 0e⃗2 + 0e⃗3 =

 0
0
0



B. (a+ b+ c)e⃗1 + 0e⃗2 + 0e⃗3 =

 a+ b+ c
0
0



C. ae⃗1 + be⃗2 + ce⃗3 =

 a
b
c





Polynomial and Matrix Spaces (AT6)

Fact 3.6.4 Every vector space with finite dimension, that is, every vector space V with a
basis of the form {v⃗1, v⃗2, . . . , v⃗n} has a linear bijection T with Euclidean space Rn that simply
swaps its basis with the standard basis {e⃗1, e⃗2, . . . , e⃗n} for Rn:

T (c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n) = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n =


c1
c2
...
cn


This transformation (in fact, any linear bijection between vector spaces) is called an isomor-
phism, and V is said to be isomorphic to Rn.

Note, in particular, that every vector space of dimension n is isomorphic to Rn.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.5 Consider the matrix space M2,2 =

{[
a b
c d

]∣∣∣∣a, b, c, d ∈ R
}

and the follow-
ing set of matrices:

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(a) Does the set S span M2,2?

A. No; the matrix
[
1 3
2 4

]
is not a lin-

ear combination of the matrices in S.

B. No; the matrix
[
7 1
0 −1

]
is not a

linear combination of the matrices in
S.

C. No; the matrix
[
−1 5
2 9

]
is not a

linear combination of the matrices in
S.

D. Yes, every matrix in M2,2 is a linear
combination of the matrices in S.

(b) Is the set S linearly independent?

A. No; the matrix
[
1 0
0 0

]
∈ S is a lin-

ear combination of the other matrices
in S.

B. No; the matrix
[
0 1
0 0

]
∈ S is a lin-

ear combination of the other matrices

in S.

C. No; the matrix
[
0 0
1 0

]
∈ S is a lin-

ear combination of the other matrices
in S.

D. Yes; no matrix in S is a linear combi-
nation of the other matrices in S.

(c) What statement do you think best describes the set

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
?

A. S is linearly independent
B. S spans M2,2

C. S is a basis of M2,2

D. S is a basis of R4

(d) What is the dimension of M2,2?

A. 2
B. 3

C. 4
D. 5

(e) Which Euclidean space is M2,2 isomorphic to?

A. R2

B. R3

C. R4

D. R5



Polynomial and Matrix Spaces (AT6)

(f) Describe an isomorphism T : M2,2 → R ? :

T

([
a b
c d

])
=


?

...

?





Polynomial and Matrix Spaces (AT6)

Activity 3.6.6 Consider polynomial space P4 = {a+ by + cy2 + dy3 + ey4|a, b, c, d, e ∈ R}
and the following set:

S =
{
1, y, y2, y3, y4

}
.

(a) Does the set S span P4?

A. No; the polynomial 1+y2+2y3 is not
a linear combination of the polynomi-
als in S.

B. No; the polynomial 6+ y− y3 + y4 is
not a linear combination of the poly-
nomials in S.

C. No; the polynomial y2 + 2y3 − y4 is
not a linear combination of the poly-
nomials in S.

D. Yes; every polynomial in P4 is a lin-
ear combination of the polynomials
in S.

(b) Is the set S linearly independent?

A. No; the polynomial y2 is a linear com-
bination of the other polynomials in
S.

B. No; the polynomial y3 is a linear com-
bination of the other polynomials in
S.

C. No; the polynomial 1 is a linear com-
bination of the other polynomials in
S.

D. Yes; no polynomial in S is a linear
combination of the other polynomials
in S.

(c) What statement do you think best describes the set

S =
{
1, y, y2, y3, y4

}
?

A. S is linearly independent
B. S spans P4

C. S is a basis of P4

(d) What is the dimension of P4?

A. 2
B. 3

C. 4
D. 5

(e) Which Euclidean space is P4 isomorphic to?

A. R2

B. R3

C. R4

D. R5

(f) Describe an isomorphism T : P4 → R ? :

T
(
a+ by + cy2 + dy3 + ey4

)
=


?

...

?





Polynomial and Matrix Spaces (AT6)

Remark 3.6.7 Since any finite-dimensional vector space is isomorphic to a Euclidean space
Rn, one approach to answering questions about such spaces is to answer the corresponding
question about Rn.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.8 Consider how to construct the polynomial x3 + x2 + 5x + 1 as a linear
combination of polynomials from the set{

x3 − 2 x2 + x+ 2, 2 x2 − 1,−x3 + 3 x2 + 3 x− 2, x3 − 6 x2 + 9 x+ 5
}

.

(a) Describe the vector space involved in this problem, and an isomorphic Euclidean space,
and relevant Euclidean vectors that can be used to solve this problem.

(b) Show how to construct an appropriate Euclidean vector from an appropriate set of
Euclidean vectors.

(c) Use this result to answer the original question.



Polynomial and Matrix Spaces (AT6)

Observation 3.6.9 The space of polynomials P (of any degree) has the basis
{1, x, x2, x3, . . . }, so it is a natural example of an infinite-dimensional vector space.

Since P and other infinite-dimensional vector spaces cannot be treated as an isomor-
phic finite-dimensional Euclidean space Rn, vectors in such vector spaces cannot be studied
by converting them into Euclidean vectors. Fortunately, most of the examples we will be
interested in for this course will be finite-dimensional.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.10 Let A =


−2 −1 1
1 0 0
0 −4 −2
0 1 3

 and let T : R3 → R4 denote the corresponding

linear transformation. Note that

RREF(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 .

The following statements are all invalid for at least one reason. Determine what makes them
invalid and, suggest alternative valid statements that the author may have meant instead.

(a) The matrix A is injective because RREF(A) has a pivot in each column.

(b) The matrix A does not span R4 because RREF(A) has a row of zeroes.

(c) The transformation T does not span R4.

(d) The transformation T is linearly independent.



Chapter 4

Matrices (MX)

Learning Outcomes
What algebraic structure do matrices have?
By the end of this chapter, you should be able to...

1. Multiply matrices.

2. Determine if a matrix is invertible, and if so, compute its inverse and use it to solve
an appropriate system of equations.

3. Calculate the change-of-basis matrix for the standard basis to a non-standard basis of
Rn.

4. Express row operations through matrix multiplication.

280



Matrices and Multiplication (MX1)

4.1 Matrices and Multiplication (MX1)

Learning Outcomes
• Multiply matrices.



Matrices and Multiplication (MX1)

Activity 4.1.1 Suppose that T : V → W is a linear transformation.

(a) What is the definition of kerT? How does it relate to the domain of T?

(b) What is definition of ImT? How does it relate to the codomain of T?



Matrices and Multiplication (MX1)

Observation 4.1.2 If T : Rn → Rm and S : Rm → Rk are linear maps, then the composition
map S ◦ T computed as (S ◦ T )(v⃗) = S(T (v⃗)) is a linear map from Rn → Rk.

Rn Rm Rk

S◦T

T S

Figure 16 The composition of two linear maps.



Matrices and Multiplication (MX1)

Activity 4.1.3 Let T : R3 → R2 be defined by the 2×3 standard matrix B and S : R2 → R4

be defined by the 4× 2 standard matrix A:

B =

[
2 1 −3
5 −3 4

]
A =


1 2
0 1
3 5
−1 −2

 .

(a) What are the domain and codomain of the composition map S ◦ T?

A. The domain is R3 and the codomain
is R2

B. The domain is R2 and the codomain
is R4

C. The domain is R3 and the codomain
is R4

D. The domain is R4 and the codomain
is R3

(b) What size will the standard matrix of S ◦ T be?

A. 4 (rows) × 3 (columns)
B. 3 (rows) × 4 (columns)

C. 3 (rows) × 2 (columns)
D. 2 (rows) × 4 (columns)

(c) Compute

(S ◦ T )(e⃗1) = S(T (e⃗1)) = S

([
2
5

])
=


?
?
?
?

 .

(d) Compute (S ◦ T )(e⃗2).

(e) Compute (S ◦ T )(e⃗3).

(f) Use (S ◦ T )(e⃗1), (S ◦ T )(e⃗2), (S ◦ T )(e⃗3) to write the standard matrix for S ◦ T .



Matrices and Multiplication (MX1)

Definition 4.1.4 We define the product AB of a m × n matrix A and a n × k matrix B
to be the m × k standard matrix of the composition map of the two corresponding linear
functions.

For the previous activity, T was a map R3 → R2, and S was a map R2 → R4, so S ◦ T
gave a map R3 → R4 with a 4× 3 standard matrix:

AB =


1 2
0 1
3 5
−1 −2

[
2 1 −3
5 −3 4

]

= [(S ◦ T )(e⃗1) (S ◦ T )(e⃗2) (S ◦ T )(e⃗3)] =


12 −5 5
5 −3 4
31 −12 11
−12 5 −5

 .

♢



Matrices and Multiplication (MX1)

Activity 4.1.5 Let S : R3 → R2 be given by the matrix A =

[
−4 −2 3
0 1 1

]
and T : R2 →

R3 be given by the matrix B =

 2 3
1 −1
0 −1

.

(a) Write the dimensions (rows × columns) for A, B, AB, and BA.

(b) Find the standard matrix AB of S ◦ T .

(c) Find the standard matrix BA of T ◦ S.



Matrices and Multiplication (MX1)

Activity 4.1.6 Consider the following three matrices.

A =

[
1 0 −3
3 2 1

]
B =


2 2 1 0 1
1 1 1 −1 0
0 0 3 2 1
−1 5 7 2 1

 C =


2 2
0 −1
3 1
4 0


(a) Find the domain and codomain of each of the three linear maps corresponding to A,

B, and C.

(b) Only one of the matrix products AB,AC,BA,BC,CA,CB can actually be computed.
Compute it.



Matrices and Multiplication (MX1)

Activity 4.1.7 Let B =

 3 −4 0
2 0 −1
0 −3 3

, and let A =

 2 7 −1
0 3 2
1 1 −1

.

(a) Compute the product BA by hand.

(b) Check your work using technology. Using Octave:

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A



Matrices and Multiplication (MX1)

Activity 4.1.8 Of the following three matrices, only two may be multiplied.

A =

[
−1 3 −2 −3
1 −4 2 3

]
B =

[
1 −6 −1
0 1 0

]
C =


1 −1 −1
0 1 −2
−2 4 −1
−2 3 −1


Explain which two can be multiplied and why. Then show how to find their product.



Matrices and Multiplication (MX1)

Activity 4.1.9 Let T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 In Fact 3.2.12 we adopted the notation

T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 = A

[
x
y

]
=


1 2
0 1
3 5
−1 −2

[
x
y

]
.

Verify that


1 2
0 1
3 5
−1 −2

[
x
y

]
=


x+ 2y

y
3x+ 5y
−x− 2y

 in terms of matrix multiplication.



Matrices and Multiplication (MX1)

Activity 4.1.10 Given two n × n matrices A and B, explain why the sentence ”Multiply
the matrices A and B together.” is ambiguous. How could you re-write the sentence in order
to eliminate the ambiguity?



The Inverse of a Matrix (MX2)

4.2 The Inverse of a Matrix (MX2)

Learning Outcomes
• Determine if a matrix is invertible, and if so, compute its inverse and use it to solve

an appropriate system of equations.



The Inverse of a Matrix (MX2)

Activity 4.2.1 Consider the matrices:

A =

[
1 5 −1
0 3 2

]
, B =

 7 2 −1 1
0 3 2 −2
1 1 −1 −3

 .

Without using technology, what is the third column of the product AB?



The Inverse of a Matrix (MX2)

Activity 4.2.2 Let A =

 2 7 −1
0 3 2
1 1 −1

. Find a 3× 3 matrix B such that BA = A, that is,

 ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1


Check your guess using technology.



The Inverse of a Matrix (MX2)

Definition 4.2.3 The identity matrix In (or just I when n is obvious from context) is the
n× n matrix

In =


1 0 · · · 0

0 1
. . . ...

... . . . . . . 0
0 · · · 0 1

 .

It has a 1 on each diagonal element and a 0 in every other position. ♢



The Inverse of a Matrix (MX2)

Fact 4.2.4 For any square matrix A, IA = AI = A: 1 0 0
0 1 0
0 0 1

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1

 1 0 0
0 1 0
0 0 1

 =

 2 7 −1
0 3 2
1 1 −1





The Inverse of a Matrix (MX2)

Activity 4.2.5 Let T : Rn → Rm be a linear map with standard matrix A. Sort the
following items into three groups of statements: a group that means T is injective, a group
that means T is surjective, and a group that means T is bijective.

A. T (x⃗) = b⃗ has a solution for all b⃗ ∈ Rm

B. T (x⃗) = b⃗ has a unique solution for all b⃗ ∈ Rm

C. T (x⃗) = 0⃗ has a unique solution.

D. The columns of A span Rm

E. The columns of A are linearly independent

F. The columns of A are a basis of Rm

G. Every column of RREF(A) has a pivot

H. Every row of RREF(A) has a pivot

I. m = n and RREF(A) = I



The Inverse of a Matrix (MX2)

Definition 4.2.6 Let T : Rn → Rn be a linear bijection with standard matrix A.
By item (B) from Activity 4.2.5 we may define an inverse map T−1 : Rn → Rn that

defines T−1(⃗b) as the unique solution x⃗ satisfying T (x⃗) = b⃗, that is, T (T−1(⃗b)) = b⃗.
Furthermore, let

A−1 = [T−1(e⃗1) · · · T−1(e⃗n)]

be the standard matrix for T−1. We call A−1 the inverse matrix of A, and we also say that
A is an invertible matrix. ♢



The Inverse of a Matrix (MX2)

Activity 4.2.7 Let T : R3 → R3 be the linear bijection given by the standard matrix

A =

 2 −1 −6
2 1 3
1 1 4

.

(a) To find x⃗ = T−1(e⃗1), we need to find the unique solution for T (x⃗) = e⃗1. Which of these
linear systems can be used to find this solution?

A.
2x1 −1x2 −6x3 = x1

2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

B.
2x1 −1x2 −6x3 = x1

2x1 +1x2 +3x3 = x2

1x1 +1x2 +4x3 = x3

C.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

D.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 1
1x1 +1x2 +4x3 = 1

(b) Use that system to find the solution x⃗ = T−1(e⃗1) for T (x⃗) = e⃗1.

(c) Similarly, solve T (x⃗) = e⃗2 to find T−1(e⃗2), and solve T (x⃗) = e⃗3 to find T−1(e⃗3).

(d) Use these to write
A−1 = [T−1(e⃗1) T−1(e⃗2) T−1(e⃗3)],

the standard matrix for T−1.



The Inverse of a Matrix (MX2)

Activity 4.2.8 Let T : R4 → R4 be the linear bijection given by the standard matrix:

A =


0 0 0 −1
1 0 −1 −4
1 1 0 −4
1 −1 −1 2

 .

(a) Calculate T−1(e⃗2) by row reducing an appropriate augmented matrix.

(b) Calculate T−1(e⃗4) by row reducing an appropriate augmented matrix.

(c) Suppose we completed the previous two tasks by hand. Which of the following state-
ments best describes the row operations we would use?

A. We had to use the same row operations in (a) as we did in (b).
B. We could have used the same row operation in (a) as we did in (b).
C. The row operations used in (a) have nothing to do with with the row operations

used in part (b).

(d) So far, we have only considered augmented matrices with a single augmented column.
Write down an augmented matrix with more than one augmented column whose RREF
would help us find A−1.



The Inverse of a Matrix (MX2)

Observation 4.2.9 Our exploration above yields a succinct way to calculate the inverse of
a matrix. Indeed, if A is an invertible matrix, then we have

RREF [A|I] =
[
I|A−1

]
.



The Inverse of a Matrix (MX2)

Activity 4.2.10 Is the matrix

 2 3 1
−1 −4 2
0 −5 5

 invertible?

A. Yes, because its transformation is a bijection.

B. Yes, because its transformation is not a bijection.

C. No, because its transformation is a bijection.

D. No, because its transformation is not a bijection.



The Inverse of a Matrix (MX2)

Observation 4.2.11 An n× n matrix A is invertible if and only if RREF(A) = In.



The Inverse of a Matrix (MX2)

Observation 4.2.12 Let T : Rn → Rn be a linear bijection with standard matrix A and
suppose b⃗ ∈ Rn. By definition of the inverse map and inverse matrix, the vector x⃗ = A−1⃗b is
the unique solution to the equation Ax⃗ = b⃗.

In other words, when the matrix A is invertible, we have a new method for solving the
equation Ax⃗ = b⃗: we can first calculate A−1 and then calculate the product x⃗ = A−1⃗b.



The Inverse of a Matrix (MX2)

Activity 4.2.13 Consider the vector equation

x1


0
1
1
1

+ x2


0
0
1
−1

+ x3


0
−1
0
−1

+ x4


−1
−4
−4
2

 =


1
1
1
1


with a unique solution.

(a) Use technology to both verify that the coefficient matrix is invertible and calculate its
inverse.

(b) Explain and demonstrate how to use the inverse to find the unique solution to the
given vector equation.



The Inverse of a Matrix (MX2)

Activity 4.2.14 Let T : R2 → R2 be the bijective linear map defined by T

([
x
y

])
=[

2x− 3y
−3x+ 5y

]
, with the inverse map T−1

([
x
y

])
=

[
5x+ 3y
3x+ 2y

]
.

(a) Compute (T−1 ◦ T )
([

−2
1

])
.

(b) If A is the standard matrix for T and A−1 is the standard matrix for T−1, find the
2× 2 matrix

A−1A =

[
? ?
? ?

]
.



The Inverse of a Matrix (MX2)

Observation 4.2.15 T−1 ◦T = T ◦T−1 is the identity map for any bijective linear transfor-
mation T . Therefore A−1A = AA−1 equals the identity matrix I for any invertible matrix
A.



The Inverse of a Matrix (MX2)

Activity 4.2.16 Now that we have defined the inverse of a matrix, we have the ability to
solve matrix equations. In the following equations, A,B all denote square matrices of the
same size and I denotes the identity matrix. For each equation, solve for X.

(a) A−1XA = B

(b) AXA−1 = B

(c) ABX = I

(d) BAX = I



The Inverse of a Matrix (MX2)

Activity 4.2.17 Solving linear systems using matrix multiplication is most useful when we
are working with one common coefficient matrix, and varying the right-hand side. That is,
when we have Ax⃗ = b⃗ for several different values of b⃗.

In the following, let A =

2 −1 −6
2 1 3
1 1 4

 and consider the following questions about various

equations of the form Ax⃗ = b⃗?

(a) Suppose that b⃗ =

11
1

. If asked to solve the equation Ax⃗ = b⃗, which of the following

approaches do you prefer?

A. Calculate RREF[A|⃗b].
B. Calculate A−1 and then compute x⃗ = A−1⃗b

(b) Suppose that b⃗1, b⃗2, b⃗3 =

11
1

 ,

21
3

 ,

−1
3
5

. If asked to solve each of the equations

Ax⃗ = b⃗1, Ax⃗ = b⃗2, Ax⃗ = b⃗3, which of the following approaches do you prefer?

A. Calculate RREF[A|⃗b1], RREF[A|⃗b2], and RREF[A|⃗b3]
B. Calculate A−1 and then compute x⃗ = A−1⃗b1, x⃗ = A−1⃗b2, and x⃗ = A−1⃗b3

(c) Suppose that b⃗1, . . . , b⃗10 are 10 distinct vectors. If asked to solve each of the equations
Ax⃗ = b⃗1, . . . , Ax⃗ = b⃗10, which of the following approaches do you prefer?

A. Calculate RREF[A|⃗b1], ... RREF[A|⃗b10].
B. Calculate A−1 and then compute x⃗ = A−1⃗b1, ... x⃗ = A−1⃗b10.



Change of Basis (MX3)

4.3 Change of Basis (MX3)

Learning Outcomes
• Calculate the change-of-basis matrix for the standard basis to a non-standard basis of

Rn.



Change of Basis (MX3)

Activity 4.3.1 Let T : R4 → R4 be the linear bijection given by the standard matrix:

A =


0 0 0 −1
1 0 −1 −4
1 1 0 −4
1 −1 −1 2

 .

(a) If b⃗ =


1
0
−1
2

, what is the meaning of the vector T−1(⃗b)?

(b) Explain and demonstrate how to find the third column of A−1.



Change of Basis (MX3)

Remark 4.3.2 So far, when working with the Euclidean vector space Rn, we have primarily
worked with the standard basis E = {e⃗1, . . . , e⃗n}. We can explore alternative perspectives
more easily if we expand our toolkit to analyze different bases.



Change of Basis (MX3)

Activity 4.3.3 Let B = {v⃗1, v⃗2, v⃗3} =


10
1

 ,

 1
−1
1

 ,

01
1

.

(a) Is B a basis of R3?

A. Yes.
B. No.

(b) Since B is a basis, we know that if v⃗ ∈ R3, the following vector equation will have a
unique solution:

x1v⃗1 + x2v⃗2 + x3v⃗3 = v⃗

Given this, we define a map CB : R3 → R3 via the rule that CB(v⃗) is equal to the unique
solution to the above vector equation. The map CB is a linear map.

Compute CB

11
1

, the unique solution to

x1v⃗1 + x2v⃗2 + x3v⃗3 =

11
1

 .

(c) Compute CB(e⃗1), CB(e⃗2), CB(e⃗3) and, in doing so, write down the standard matrix MB
of CB.



Change of Basis (MX3)

Definition 4.3.4 Given a basis B =
{
⊑⃗∞, . . . , ⊑⃗\

}
of Rn, the change of basis/coordinate

transformation from the standard basis to B is the transformation CB : Rn → Rn defined by
the property that, for any vector v⃗ ∈ Rn, the vector CB(v⃗) is the unique solution to the
vector equation:

x1v⃗1 + · · ·+ xnv⃗n = v⃗.

Its standard matrix is called the change-of-basis matrix from the standard basis to B and is
denoted by MB. It satisfies the following:

MB = [v⃗1 · · · v⃗n]
−1.

♢



Change of Basis (MX3)

Remark 4.3.5 The vector CB(v⃗) is the B-coordinates of v⃗. If you work with standard

coordinates, and I work with B-coordinates, then to build the vector that you call v⃗ =

a1...
an

 =

a1e⃗1 + · · ·+ ane⃗n, I would first compute CB(v⃗) =

x1
...
xn

 and then build v⃗ = x1v⃗1 + · · ·+ xnv⃗n.

In particular, notation as above, we would have:

a1e⃗1 + · · · ane⃗n = v⃗ = x1v⃗1 + · · ·+ xnv⃗n.



Change of Basis (MX3)

Activity 4.3.6 Let v⃗1 =

 1
−2
1

 , v⃗2 =

−1
0
3

 , v⃗3 =

 0
1
−1

, and B = {v⃗1, v⃗2, v⃗3}

(a) Calculate MB using technology.

(b) Use your result to calculate CB

11
1

 and express the vector

11
1

 as a linear combi-

nation of v⃗1, v⃗2, v⃗3.



Change of Basis (MX3)

Observation 4.3.7 Let T : Rn → Rn be a linear transformation and let A denote its standard
matrix. If B =

{
⊑⃗∞, . . . , ⊑⃗\

}
is some other basis, then we have:

MBAM
−1
B = MBA[v⃗1 · · · v⃗n]

= MB[T (v⃗1) · · ·T (v⃗n)]
= [CB(T (v⃗1)) · · ·CB(T (v⃗n))]

In other words, the matrix MBAM
−1
B is the matrix whose columns consist of B-coordinate

vectors of the image vectors T (v⃗i). The matrix MBAM
−1
B is called the matrix of T with

respect to B-coordinates.



Change of Basis (MX3)

Activity 4.3.8 Let B = {v⃗1, v⃗2, v⃗3} =


 1
−2
1

 ,

−1
0
3

 ,

 0
1
−1

 be basis from the previous

Activity. Let T denote the linear transformation whose standard matrix is given by:

A =

 9 4 4
6 9 2

−18 −16 −9

 .

(a) Calculate the matrix MBAM
−1
B .

(b) The matrix A describes how T transforms the standard basis of R3. The matrix
MBAM

−1
B describes how T transforms the basis B (in B-coordinates).

Which of these two descriptions of T is most helpful to you in describing/
understanding/visualizing the transformation T and why?



Change of Basis (MX3)

Definition 4.3.9 Suppose that A and B are two n × n matrix. We say that A is similar
to B if there exists an invertible matrix P that satisfies:

PAP−1 = B.

The results of this section demonstrate that similar matrices can be viewed as describing
the same linear transformation with respect to different bases. Specifically, if A describes a
transformation with respect to the standard basis of Rn, then the matrix B describes the
same linear transformation with respect to the basis consisting of the columns of P−1. ♢



Change of Basis (MX3)

Activity 4.3.10 Suppose that T : R3 → R3 is a linear transformation and you knew that
B = {v⃗1, v⃗2, v⃗3} was a basis of R3 that satisfied:

T (v⃗1) = 3v⃗1, T (v⃗2) = −5v⃗2, T (v⃗3) = 7v⃗3.

If A is the standard matrix of T , do you have enough information to determine the matrix
MBAM

−1
B ? If yes, write it down; if not, describe what additional information is needed.



Change of Basis (MX3)

Activity 4.3.11 Suppose that A is similar to B. Prove that B is also similar to A. Thus,
we may simply that A and B are similar matrices.



Row Operations as Matrix Multiplication (MX4)

4.4 Row Operations as Matrix Multiplication (MX4)

Learning Outcomes
• Express row operations through matrix multiplication.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.1 Given a linear transformation T , how did we define its standard matrix A?
How do we compute the standard matrix A from T?



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.2 Tweaking the identity matrix slightly allows us to write row operations in
terms of matrix multiplication.

(a) Which of these tweaks of the identity matrix yields a matrix that doubles the third
row of A when left-multiplying? (2R3 → R3) ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
2 2 −2



A.

 2 0 0
0 1 0
0 0 1


B.

 1 0 0
0 2 0
0 0 1


C.

 1 0 0
0 1 0
0 0 2


D.

 2 0 0
0 2 0
0 0 2


(b) Which of these tweaks of the identity matrix yields a matrix that swaps the second

and third rows of A when left-multiplying? (R2 ↔ R3) ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
1 1 −1
0 3 2



A.

 1 0 0
0 0 1
0 1 0


B.

 0 1 0
0 0 1
1 0 0


C.

 0 0 1
0 1 0
1 0 0


D.

 0 1 0
1 0 0
0 0 1


(c) Which of these tweaks of the identity matrix yields a matrix that adds 5 times the

third row of A to the first row when left-multiplying? (R1 + 5R3 → R1) ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 + 5(1) 7 + 5(1) −1 + 5(−1)
0 3 2
1 1 −1



A.

 1 0 1
0 1 0
0 0 5


B.

 1 0 5
0 1 0
0 0 1


C.

 5 5 5
0 1 0
0 0 1


D.

 1 0 5
0 1 0
0 0 5





Row Operations as Matrix Multiplication (MX4)

Fact 4.4.3 If R is the result of applying a row operation to I, then RA is the result of
applying the same row operation to A.

• Scaling a row: R =

 c 0 0
0 1 0
0 0 1



• Swapping rows: R =

 0 1 0
1 0 0
0 0 1



• Adding a row multiple to another row: R =

 1 0 c
0 1 0
0 0 1


Such matrices can be chained together to emulate multiple row operations. In particular,

RREF(A) = Rk . . . R2R1A

for some sequence of matrices R1, R2, . . . , Rk.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.4 What would happen if you right-multiplied by the tweaked identity matrix
rather than left-multiplied?

A. The manipulated rows would be reversed.

B. Columns would be manipulated instead of rows.

C. The entries of the resulting matrix would be rotated 180 degrees.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.5 Consider the two row operations R2 ↔ R3 and R1 + R2 → R1 applied as
follows to show A ∼ B:

A =

 −1 4 5
0 3 −1
1 2 3

 ∼

 −1 4 5
1 2 3
0 3 −1


∼

 −1 + 1 4 + 2 5 + 3
1 2 3
0 3 −1

 =

 0 6 8
1 2 3
0 3 −1

 = B

Express these row operations as matrix multiplication by expressing B as the product of two
matrices and A:

B =

 ? ? ?
? ? ?
? ? ?

 ? ? ?
? ? ?
? ? ?

A

Check your work using technology.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.6

(a) Give a 3× 3 matrix B that may be used to perform the row operation R1 ↔ R3.

(b) Give a 3× 3 matrix C that may be used to perform the row operation R3+5R2 → R3.

(c) Give a 3× 3 matrix P that may be used to perform the row operation −4R1 → R1.

(d) Give a single 3× 3 matrix that may be used to first apply R1 ↔ R3, then −4R1 → R1,
and finally R3 + 5R2 → R3 (note the order).

(e) Show how to manually apply those row operations to A =

 0 1 2
2 −5 −8
1 −4 −7

, then use

technology to verify that your matrix in the previous task gives the same result.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.7 Consider the matrix A =

 2 6 −1 6
1 3 −1 2
−1 −3 2 0

. Illustrate Fact 4.4.3 by finding

row operation matrices R1, . . . , Rk for which

RREF(A) = Rk · · ·R2R1A.

If you and a teammate were to do this independently, would you necessarily come up with
the same sequence of matrices R1, . . . , Rk?



Chapter 5

Geometric Properties of Linear Maps
(GT)

Learning Outcomes
How do we understand linear maps geometrically?
By the end of this chapter, you should be able to...

1. Describe how a row operation affects the determinant of a matrix.

2. Compute the determinant of a 4× 4 matrix.

3. Find the eigenvalues of a 2× 2 matrix.

4. Find a basis for the eigenspace of a 4× 4 matrix associated with a given eigenvalue.

330



Row Operations and Determinants (GT1)

5.1 Row Operations and Determinants (GT1)

Learning Outcomes
• Describe how a row operation affects the determinant of a matrix.



Row Operations and Determinants (GT1)

Activity 5.1.1 Consider the linear transformation T : R2 → R2 corresponding to the stan-
dard matrix A =

[
1 3
−1 2

]
.

(a) Draw a figure that depicts how T transforms the unit square.

(b) What geometric features of the unit square were preserved by the transformation?
Which geometric features changed?



Row Operations and Determinants (GT1)

Observation 5.1.2 The tool in Figure 46 can be used to visualize the effect of a linear
transformation (defined by its standard matrix) on the geometry of the unit square defined
by the standard basic vectors e⃗1, e⃗2.

Standalone
Embed

Figure 17 Tool to visualize a linear transformation from R2 to R2

https://tbil.org/GT1-interactive-transformation.html
https://tbil.org/GT1-interactive-transformation-if.html


Row Operations and Determinants (GT1)

Activity 5.1.3 The image in Figure 47 illustrates how the linear transformation T : R2 → R2

given by the standard matrix A =

[
2 0
0 3

]
transforms the unit square.

Ae⃗1 =

[
2
0

]
Ae⃗2 =

[
0
3

]

Figure 18 Transformation of the unit square by the matrix A.

(a) What are the lengths of Ae⃗1 and Ae⃗2?

(b) What is the area of the transformed unit square?



Row Operations and Determinants (GT1)

Activity 5.1.4 The image below illustrates how the linear transformation S : R2 → R2

given by the standard matrix B =

[
2 3
0 4

]
transforms the unit square.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

Figure 19 Transformation of the unit square by the matrix B

(a) What are the lengths of Be⃗1 and Be⃗2?

(b) What is the area of the transformed unit square?



Row Operations and Determinants (GT1)

Observation 5.1.5 It is possible to find two nonparallel vectors that are scaled but not
rotated by the linear map given by B.

Be⃗1 =

[
2 3
0 4

] [
1
0

]
=

[
2
0

]
= 2e⃗1

B

[
3
4
1
2

]
=

[
2 3
0 4

] [
3
4
1
2

]
=

[
3
2

]
= 4

[
3
4
1
2

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 20 Certain vectors are stretched out without being rotated.
The process for finding such vectors will be covered later in this chapter.



Row Operations and Determinants (GT1)

Observation 5.1.6 Notice that while a linear map can transform vectors in various ways,
linear maps always transform parallelograms into parallelograms, and these areas are always
transformed by the same factor: in the case of B =

[
2 3
0 4

]
, this factor is 8.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 21 A linear map transforming parallelograms into parallelograms.
Since this change in area is always the same for a given linear map, it will be equal to

the value of the transformed unit square (which begins with area 1).



Row Operations and Determinants (GT1)

Remark 5.1.7 We will define the determinant of a square matrix B, or det(B) for short,
to be the factor by which B scales areas. In order to figure out how to compute it, we first
figure out the properties it must satisfy.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 22 The linear transformation B scaling areas by a constant factor, which we call the
determinant



Row Operations and Determinants (GT1)

Activity 5.1.8 The transformation of the unit square by the standard matrix [e⃗1 e⃗2] =[
1 0
0 1

]
= I is illustrated below. If det([e⃗1 e⃗2]) = det(I) is the area of resulting parallelo-

gram, what is the value of det([e⃗1 e⃗2]) = det(I)?

e⃗1 =

[
1
0

]e⃗2 =

[
0
1

]

Figure 23 The transformation of the unit square by the identity matrix.
The value for det([e⃗1 e⃗2]) = det(I) is:

A. 0

B. 1

C. 2

D. 4



Row Operations and Determinants (GT1)

Activity 5.1.9

Standalone
Embed

Which of the following is true?

A. det([v⃗ v⃗]) = 0

B. det([v⃗ v⃗]) = 1

C. det([v⃗ v⃗]) = 2

D. det([v⃗ v⃗]) = 4

https://tbil.org/GT1-interactive-duplicate-column.html
https://tbil.org/GT1-interactive-duplicate-column-if.html


Row Operations and Determinants (GT1)

Activity 5.1.10

Standalone
Embed

Which of the following is true?

A. det([cv⃗ w⃗]) = det([v⃗ w⃗])

B. det([cv⃗ w⃗]) = c det([v⃗ w⃗])

C. det([cv⃗ w⃗]) = c2 det([v⃗ w⃗])

https://tbil.org/GT1-interactive-scale-column.html
https://tbil.org/GT1-interactive-scale-column-if.html


Row Operations and Determinants (GT1)

Activity 5.1.11

Standalone
Embed

Which of the following is true?

A. det([u⃗+ v⃗ w⃗]) = det([u⃗ w⃗]) = det([v⃗ w⃗])

B. det([u⃗+ v⃗ w⃗]) = det([u⃗ w⃗]) + det([v⃗ w⃗])

C. det([u⃗+ v⃗ w⃗]) = det([u⃗ w⃗]) det([v⃗ w⃗])

https://tbil.org/GT1-interactive-add-column.html
https://tbil.org/GT1-interactive-add-column-if.html


Row Operations and Determinants (GT1)

Definition 5.1.12 The determinant is the unique function det : Mn,n → R satisfying these
properties:

1. det(I) = 1

2. det(A) = 0 whenever two columns of the matrix are identical.

3. det[· · · cv⃗ · · · ] = c det[· · · v⃗ · · · ], assuming no other columns change.

4. det[· · · v⃗ + w⃗ · · · ] = det[· · · v⃗ · · · ] + det[· · · w⃗ · · · ], assuming no other columns
change.

Note that these last two properties together can be phrased as “The determinant is linear
in each column.”

Essentially, the determinant measures the change in “size” caused by a transformation,
where “size” means area for 2× 2 matrices and volume for 3× 3 matrices. ♢



Row Operations and Determinants (GT1)

Observation 5.1.13 The determinant must also satisfy other properties. Consider
det([v⃗ w⃗ + cv⃗]) and det([v⃗ w⃗]).

Standalone
Embed

The base of both parallelograms is v⃗, while the height has not changed, so the determinant
does not change either. This can also be proven using the other properties of the determinant:

det([v⃗ w⃗ + cv⃗]) = det([v⃗ w⃗]) + det([v⃗ cv⃗])

= det([v⃗ w⃗]) + c det([v⃗ v⃗])

= det([v⃗ w⃗]) + c · 0
= det([v⃗ w⃗])

https://tbil.org/GT1-interactive-add-column-multiples.html
https://tbil.org/GT1-interactive-add-column-multiples-if.html


Row Operations and Determinants (GT1)

Remark 5.1.14 Swapping columns may be thought of as a reflection, which is represented
by a negative determinant. For example, the following matrices transform the unit square
into the same parallelogram, but the second matrix reflects its orientation.

A =

[
2 3
0 4

]
detA = 8 B =

[
3 2
4 0

]
detB = −8

Ae⃗1 =

[
2
0

]

Ae⃗2 =

[
3
4

]

Be⃗2 =

[
2
0

]

Be⃗1 =

[
3
4

]

Figure 24 Reflection of a parallelogram as a result of swapping columns.



Row Operations and Determinants (GT1)

Observation 5.1.15 The fact that swapping columns multiplies determinants by a negative
may be verified by adding and subtracting columns.

det([v⃗ w⃗]) = det([v⃗ + w⃗ w⃗])

= det([v⃗ + w⃗ w⃗ − (v⃗ + w⃗)])

= det([v⃗ + w⃗ − v⃗])

= det([v⃗ + w⃗ − v⃗ − v⃗])

= det([w⃗ − v⃗])

= − det([w⃗ v⃗])



Row Operations and Determinants (GT1)

Fact 5.1.16 To summarize, we’ve shown that the column versions of the three row-reducing
operations a matrix may be used to simplify a determinant in the following way:

1. Multiplying a column by a scalar multiplies the determinant by that scalar:

c det([· · · v⃗ · · · ]) = det([· · · cv⃗ · · · ])

2. Swapping two columns changes the sign of the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column does not change the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])



Row Operations and Determinants (GT1)

Activity 5.1.17 The transformation given by the standard matrix A scales areas by 4, and
the transformation given by the standard matrix B scales areas by 3. By what factor does
the transformation given by the standard matrix AB scale areas?

B A

Figure 25 Area changing under the composition of two linear maps

A. 1

B. 7

C. 12

D. Cannot be determined



Row Operations and Determinants (GT1)

Fact 5.1.18 Since the transformation given by the standard matrix AB is obtained by applying
the transformations given by A and B, it follows that

det(AB) = det(A) det(B) = det(B) det(A) = det(BA).



Row Operations and Determinants (GT1)

Remark 5.1.19 Recall that row operations may be produced by matrix multiplication.

• Multiply the first row of A by c:


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A

• Swap the first and second row of A:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

A

• Add c times the third row to the first row of A:


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

A



Row Operations and Determinants (GT1)

Fact 5.1.20 The determinants of row operation matrices may be computed by manipulating
columns to reduce each matrix to the identity:

• Scaling a row: det


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c

• Swapping rows: det


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = −1 det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = −1

• Adding a row multiple to another row: det


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

det


1 0 c− 1c 0
0 1 0− 0c 0
0 0 1− 0c 0
0 0 0− 0c 1

 = det(I) = 1



Row Operations and Determinants (GT1)

Activity 5.1.21 Consider the row operation R1 + 4R3 → R1 applied as follows to show
A ∼ B:

A =


1 2 0 −3
4 1 3 0
0 0 −3 −5
1 1 1 3

 ∼


1 + 4(0) 2 + 4(0) 0 + 4(−3) −3 + 4(−5)

4 1 3 0
0 0 −3 −5
1 1 1 3

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation to I =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

(b) The determinant of A is 70. Complete the following computation to calculate the
determinant of B:

det(B) = det(RA)

= det(R) det(A)
= ( ? )( ? )

= ?



Row Operations and Determinants (GT1)

Activity 5.1.22 Consider the row operation R1 ↔ R4 applied as follows to show A ∼ B:

A =


1 2 0 −3
4 1 3 0
0 0 −3 −5
1 1 1 3

 ∼


1 1 1 3
4 1 3 0
0 0 −3 −5
1 2 0 −3

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation to I.

(b) The determinant of A is 70. Show how to compute the determinant of B.



Row Operations and Determinants (GT1)

Activity 5.1.23 Consider the row operation 3R2 → R2 applied as follows to show A ∼ B:

A =


1 2 0 −3
4 1 3 0
0 0 −3 −5
1 1 1 3

 ∼


1 2 0 −3

3(4) 3(1) 3(3) 3(0)
0 0 −3 −5
1 1 1 3

 = B

(a) Find a matrix R such that B = RA.

(b) The determinant of A is 70. Show how to compute the determinant of B.



Row Operations and Determinants (GT1)

Activity 5.1.24 Let A be any 4× 4 matrix with determinant 2.

(a) Let B be the matrix obtained from A by applying the row operation R1 − 5R3 → R1.
What is detB?

A 4 B -2 C 2 D 10

(b) Let M be the matrix obtained from A by applying the row operation R3 ↔ R1. What
is detM?

A 4 B -2 C 2 D 10

(c) Let P be the matrix obtained from A by applying the row operation 2R4 → R4. What
is detP?

A 4 B -2 C 2 D 10



Row Operations and Determinants (GT1)

Remark 5.1.25 Recall that the column versions of the three row-reducing operations a
matrix may be used to simplify a determinant:

1. Multiplying columns by scalars:

det([· · · cv⃗ · · · ]) = c det([· · · v⃗ · · · ])

2. Swapping two columns:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])



Row Operations and Determinants (GT1)

Remark 5.1.26 The determinants of row operation matrices may be computed by manipu-
lating columns to reduce each matrix to the identity:

• Scaling a row:


1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 0



• Swapping rows:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0



• Adding a row multiple to another row:


1 0 0 0
0 1 c 0
0 0 1 0
0 0 0 1





Row Operations and Determinants (GT1)

Fact 5.1.27 Thus we can also use both row operations to simplify determinants:

• Multiplying rows by scalars:

det


...
cR
...

 = c det


...
R
...


• Swapping two rows:

det



...
R
...
S
...

 = − det



...
S
...
R
...


• Adding multiples of rows/columns to other rows:

det



...
R
...
S
...

 = det



...
R + cS

...
S
...





Row Operations and Determinants (GT1)

Activity 5.1.28 Complete the following derivation for a formula calculating 2× 2 determi-
nants:

det
[
a b
c d

]
= ? det

[
1 b/a
c d

]
= ? det

[
1 b/a

c− c d− bc/a

]
= ? det

[
1 b/a
0 d− bc/a

]
= ? det

[
1 b/a
0 1

]
= ? det

[
1 0
0 1

]
= ? det I
= ?



Row Operations and Determinants (GT1)

Observation 5.1.29 So we may compute the determinant of
[
2 4
2 3

]
by using determinant

properties to manipulate its rows/columns to reduce the matrix to I:

det
[
2 4
2 3

]
= 2 det

[
1 2
2 3

]
= 2 det

[
1 2
0 −1

]
= −2 det

[
1 −2
0 1

]
= −2 det

[
1 0
0 1

]
= −2

Or we may use a formula:

det
[
2 4
2 3

]
= (2)(3)− (4)(2) = −2



Row Operations and Determinants (GT1)

Activity 5.1.30 Suppose we have a linear transformation T : R2 → R2. Given some shape
S in the plane R2, we can use to T to transform it into some new shape T (S). Consider the
following questions about properties that may or may not be preserved by T .

(a) If S is a straight line segment, explain why T (S) is also a straight line segment.

(b) If S is a straight line segment, does T (S) necessarily have to have the same length as
that of S?

(c) If S is a triangle, explain why T (S) is also a triangle.

(d) Continuing as above, do the angles of T (S) necessarily have to be the same as those
of S?



Computing Determinants (GT2)

5.2 Computing Determinants (GT2)

Learning Outcomes
• Compute the determinant of a 4× 4 matrix.



Computing Determinants (GT2)

Activity 5.2.1 Consider the matrix A =

[
1 2
3 4

]
.

(a) Use a combination of row and column operations to transform A into the identity
matrix. Use this to calculate the determinant of A.

(b) Check your work using the formula for the determinant of a 2× 2 matrix.



Computing Determinants (GT2)

Remark 5.2.2 We’ve seen that row reducing all the way into RREF gives us a method of
computing determinants.

However, we learned in Chapter 1 that this can be tedious for large matrices. Thus, we
will try to figure out how to turn the determinant of a larger matrix into the determinant of
a smaller matrix.



Computing Determinants (GT2)

Activity 5.2.3 The following image illustrates the transformation of the unit cube by the

matrix

 1 1 0
1 3 1
0 0 1

.

 0
1
1



 1
1
0



 1
3
0

h = 1

Figure 26 Transformation of the unit cube by the linear transformation.
Recall that for this solid V = Bh, where h is the height of the solid and B is the area of

its parallelogram base. So what must its volume be?

A. det
[
1 1
1 3

]

B. det
[
1 0
3 1

]
C. det

[
1 1
0 1

]

D. det
[
1 3
0 0

]



Computing Determinants (GT2)

Fact 5.2.4 If row i contains all zeros except for a 1 on the main (upper-left to lower-right)
diagonal, then both column and row i may be removed without changing the value of the
determinant.

det


3 2 −1 3
0 1 0 0
−1 4 1 0
5 0 11 1

 = det

 3 −1 3
−1 1 0
5 11 1


Since row and column operations affect the determinants in the same way, the same

technique works for a column of all zeros except for a 1 on the main diagonal.

det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = det

 3 −1 5
−1 1 11
3 0 1


Put another way, if you have either a column or row from the identity matrix, you can

cancel both the column and row containing the 1.



Computing Determinants (GT2)

Activity 5.2.5 Remove an appropriate row and column of det

 1 0 0
1 5 12
3 2 −1

 to simplify the

determinant to a 2× 2 determinant.



Computing Determinants (GT2)

Activity 5.2.6 Simplify det

 0 3 −2
2 5 12
0 2 −1

 to a multiple of a 2×2 determinant by first doing

the following:

(a) Factor out a 2 from a column.

(b) Swap rows or columns to put a 1 on the main diagonal.



Computing Determinants (GT2)

Activity 5.2.7 Simplify det

 4 −2 2
3 1 4
1 −1 3

 to a multiple of a 2×2 determinant by first doing

the following:

(a) Use row/column operations to create two zeroes in the same row or column.

(b) Factor/swap as needed to get a row/column of all zeroes except a 1 on the main
diagonal.



Computing Determinants (GT2)

Observation 5.2.8 Using row/column operations, you can introduce zeros and reduce di-
mension to whittle down the determinant of a large matrix to a determinant of a smaller
matrix.

det


4 3 0 1
2 −2 4 0
−1 4 1 5
2 8 0 3

 = det


4 3 0 1
6 −18 0 −20
−1 4 1 5
2 8 0 3

 = det

 4 3 1
6 −18 −20
2 8 3



= · · · = −2 det

 1 3 4
0 21 43
0 −1 −10

 = −2 det
[

21 43
−1 −10

]

= · · · = −2 det
[
−167 21
0 1

]
= −2 det[−167]

= −2(−167) det(I) = 334



Computing Determinants (GT2)

Activity 5.2.9 Rewrite

det


2 1 −2 1
3 0 1 4
−2 2 3 0
−2 0 −3 −3


as a multiple of a determinant of a 3× 3 matrix.



Computing Determinants (GT2)

Activity 5.2.10 Compute det


2 3 5 0
0 3 2 0
1 2 0 3
−1 −1 2 2

 by using any combination of row/column

operations.



Computing Determinants (GT2)

Observation 5.2.11 Another option is to take advantage of the fact that the determinant
is linear in each row or column. This approach is called Laplace expansion or cofactor
expansion.

For example, since
[
1 2 4

]
= 1

[
1 0 0

]
+ 2

[
0 1 0

]
+ 4

[
0 0 1

]
,

det

 2 3 5
−1 3 5
1 2 4

 = 1 det

 2 3 5
−1 3 5
1 0 0

+ 2 det

 2 3 5
−1 3 5
0 1 0

+ 4 det

 2 3 5
−1 3 5
0 0 1


= −1 det

 5 3 2
5 3 −1
0 0 1

− 2 det

 2 5 3
−1 5 3
0 0 1

+ 4 det

 2 3 5
−1 3 5
0 0 1


= − det

[
5 3
5 3

]
− 2 det

[
2 5
−1 5

]
+ 4 det

[
2 3
−1 3

]



Computing Determinants (GT2)

Observation 5.2.12 Recall the formula for a 2×2 determinant found in Observation 5.1.29:

det
[
a b
c d

]
= ad− bc.

There are formulas and algorithms for the determinants of larger matrices, but they can
be pretty tedious to use. For example, writing out a formula for a 4× 4 determinant would
require 24 different terms!

det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = a11(a22(a33a44 − a43a34)− a23(a32a44 − a42a34) + . . . ) + . . .



Computing Determinants (GT2)

Activity 5.2.13 Based on the previous activities, which technique is easier for computing
determinants?

A. Memorizing formulas.

B. Using row/column operations.

C. Laplace expansion.

D. Some other technique.



Computing Determinants (GT2)

Activity 5.2.14 Use your preferred technique to compute det


4 −3 0 0
1 −3 2 −1
3 2 0 3
0 −3 2 −2

.



Computing Determinants (GT2)

Activity 5.2.15 A diagonal matrix is a matrix that has zeroes in every position except
(possibly) the main upper-left to lower-right diagonal. A matrix is upper (resp. lower)
triangular if every entry below (resp. above) the main diagonal is zero.

(a) Explain why the determinant of a diagonal matrix is always equal to the product of
the entries on the main diagonal.

(b) Explain why the determinant of an upper (or lower) triangular matrix is always equal
to the product of the entries on the main diagonal.



Eigenvalues and Characteristic Polynomials (GT3)

5.3 Eigenvalues and Characteristic Polynomials (GT3)

Learning Outcomes
• Find the eigenvalues of a 2× 2 matrix.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.1 Let R : R2 → R2 be the transformation given by rotating vectors about the
origin through and angle of 45◦, and let S : R2 → R2 denote the transformation that reflects
vectors about the line x1 = x2.

(a) If L is a line, let R(L) denote the line obtained by applying R to it. Are there any
lines L for which R(L) is parallel to L?

(b) Now consider the transformation S. Are there any lines L for which S(L) is parallel
to L?



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.2 An invertible matrix M and its inverse M−1 are given below:

M =

[
1 2
3 4

]
M−1 =

[
−2 1
3/2 −1/2

]
Which of the following is equal to det(M) det(M−1)?

A. −1

B. 0

C. 1

D. 4



Eigenvalues and Characteristic Polynomials (GT3)

Fact 5.3.3 For every invertible matrix M ,

det(M) det(M−1) = det(I) = 1

so det(M−1) = 1
det(M)

.
Furthermore, a square matrix M is invertible if and only if det(M) ̸= 0.



Eigenvalues and Characteristic Polynomials (GT3)

Observation 5.3.4 Consider the linear transformation A : R2 → R2 given by the matrix
A =

[
2 2
0 3

]
.

Ae⃗1e⃗1

Ae⃗2

e⃗2

Figure 27 Transformation of the unit square by the linear transformation A

It is easy to see geometrically that

A

[
1
0

]
=

[
2 2
0 3

] [
1
0

]
=

[
2
0

]
= 2

[
1
0

]
.

It is less obvious (but easily checked once you find it) that

A

[
2
1

]
=

[
2 2
0 3

] [
2
1

]
=

[
6
3

]
= 3

[
2
1

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Definition 5.3.5 Let A ∈ Mn,n. An eigenvector for A is a vector x⃗ ∈ Rn such that Ax⃗ is
parallel to x⃗.

Ae⃗1 = 2e⃗1e⃗1

Ae⃗2

e⃗2

A

[
2
1

]
= 3

[
2
1

][
2
1

]

Figure 28 The map A stretches out the eigenvector
[
2
1

]
by a factor of 3 (the corresponding

eigenvalue).

In other words, Ax⃗ = λx⃗ for some scalar λ. If x⃗ ̸= 0⃗, then we say x⃗ is a nontrivial
eigenvector and we call this λ an eigenvalue of A. ♢



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.6

Standalone
Embed

What are the eigenvalues for this matrix?

A. 1,−2

B. −1, 3

C. 2,−3

D. −1,−2

https://tbil.org/GT3-interactive-eigenvector.html
https://tbil.org/GT3-interactive-eigenvector-if.html


Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.7 Finding the eigenvalues λ that satisfy

Ax⃗ = λx⃗ = λ(Ix⃗) = (λI)x⃗

for some nontrivial eigenvector x⃗ is equivalent to finding nonzero solutions for the matrix
equation

(A− λI)x⃗ = 0⃗.

(a) If λ is an eigenvalue, and T is the transformation with standard matrix A− λI, which
of these must contain a non-zero vector?

A. The kernel of T
B. The image of T

C. The domain of T
D. The codomain of T

(b) Therefore, what can we conclude?

A. A is invertible
B. A is not invertible

C. A− λI is invertible
D. A− λI is not invertible

(c) And what else?

A. detA = 0

B. detA = 1

C. det(A− λI) = 0

D. det(A− λI) = 1



Eigenvalues and Characteristic Polynomials (GT3)

Fact 5.3.8 The eigenvalues λ for a matrix A are exactly the values that make A − λI
non-invertible.

Thus the eigenvalues λ for a matrix A are the solutions to the equation

det(A− λI) = 0.



Eigenvalues and Characteristic Polynomials (GT3)

Definition 5.3.9 The expression det(A− λI) is called the characteristic polynomial of
A.

For example, when A =

[
1 2
5 4

]
, we have

A− λI =

[
1 2
5 4

]
−

[
λ 0
0 λ

]
=

[
1− λ 2
5 4− λ

]
.

Thus the characteristic polynomial of A is

det
[
1− λ 2
5 4− λ

]
= (1− λ)(4− λ)− (2)(5) = λ2 − 5λ− 6

and its eigenvalues are the solutions −1, 6 to λ2 − 5λ− 6 = 0. ♢



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.10 Let A =

[
5 2
−3 −2

]
.

(a) Compute det(A− λI) to determine the characteristic polynomial of A.

(b) Set this characteristic polynomial equal to zero and factor to determine the eigenvalues
of A.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.11 Find all the eigenvalues for the matrix A =

[
3 −3
2 −4

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.12 Find all the eigenvalues for the matrix A =

[
1 −4
0 5

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.13 Find all the eigenvalues for the matrix A =

 3 −3 1
0 −4 2
0 0 7

.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.14 Let A ∈ Mn,n and λ ∈ R. The eigenvalues of A that correspond to λ are
the vectors that get stretched by a factor of λ. Consider the following special cases for which
we can make more geometric meaning.

(a) What are some other ways we can think of the eigenvectors corresponding to eigenvalue
λ = 0?

(b) What are some other ways we can think of the eigenvectors corresponding to eigenvalue
λ = 1?

(c) What are some other ways we can think of the eigenvectors corresponding to eigenvalue
λ = −1?

(d) How might we interpret a matrix that has no (real) eigenvectors/values?



Eigenvectors and Eigenspaces (GT4)

5.4 Eigenvectors and Eigenspaces (GT4)

Learning Outcomes
• Find a basis for the eigenspace of a 4× 4 matrix associated with a given eigenvalue.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.1 Which of the following vectors is an eigenvector for A =
2 4 −1 −5
0 0 −3 −9
1 1 0 2
−2 −2 3 5

?

A.


−2
1
0
1



B.


−3
3
−2
1





Eigenvectors and Eigenspaces (GT4)

Activity 5.4.2 It’s possible to show that −2 is an eigenvalue for A =

 −1 4 −2
2 −7 9
3 0 4

.

Compute the kernel of the transformation with standard matrix

A− (−2)I =

 ? 4 −2
2 ? 9
3 0 ?


to find all the eigenvectors x⃗ such that Ax⃗ = −2x⃗.



Eigenvectors and Eigenspaces (GT4)

Definition 5.4.3 Since the kernel of a linear map is a subspace of Rn, and the kernel
obtained from A− λI contains all the eigenvectors associated with λ, we call this kernel the
eigenspace of A associated with λ. ♢



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.4 Find a basis for the eigenspace for the matrix

 0 0 3
1 0 −1
0 1 3

 associated with

the eigenvalue 3.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.5 Find a basis for the eigenspace for the matrix


5 −2 0 4
6 −2 1 5
−2 1 2 −3
4 5 −3 6

 asso-

ciated with the eigenvalue 1.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.6 Find a basis for the eigenspace for the matrix


4 3 0 0
3 3 0 0
0 0 2 5
0 0 0 2

 associated

with the eigenvalue 2.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.7 Suppose that T : R2 → R2 is a linear transformation with standard matrix A.
Further, suppose that we know that u⃗ =

[
1
−1

]
and v⃗ =

[
2
−3

]
are eigenvectors corresponding

to eigenvalues 2 and −3 respectively.

(a) Express the vector w⃗ =

[
2
1

]
as a linear combination of u⃗, v⃗.

(b) Determine T (w⃗).



Appendix A

Applications

A.1 Civil Engineering: Trusses and Struts
Definition A.1.1 In engineering, a truss is a structure designed from several beams of
material called struts, assembled to behave as a single object.

Figure 29 A simple truss

401



Civil Engineering: Trusses and Struts

C

A

D

B

E

Figure 30 A simple truss
♢



Civil Engineering: Trusses and Struts

Activity A.1.2 Consider the representation of a simple truss pictured below. All of the
seven struts are of equal length, affixed to two anchor points applying a normal force to
nodes C and E, and with a 10000N load applied to the node given by D.

C

A

D

B

E

Figure 31 A simple truss
Which of the following must hold for the truss to be stable?

1. All of the struts will experience compression.

2. All of the struts will experience tension.

3. Some of the struts will be compressed, but others will be tensioned.



Civil Engineering: Trusses and Struts

Observation A.1.3 Since the forces must balance at each node for the truss to be stable,
some of the struts will be compressed, while others will be tensioned.

C

A

D

B

E

Figure 32 Completed truss
By finding vector equations that must hold at each node, we may determine many of the

forces at play.



Civil Engineering: Trusses and Struts

Remark A.1.4 For example, at the bottom left node, 3 forces are acting.

C

A

D

B

E

Figure 33 Truss with forces

Let F⃗CA be the force on C given by the compression/tension of the strut CA, let F⃗CD be
defined similarly, and let N⃗C be the normal force of the anchor point on C.

For the truss to be stable, we must have:

F⃗CA + F⃗CD + N⃗C = 0⃗



Civil Engineering: Trusses and Struts

Activity A.1.5 Using the conventions of the previous remark, and where L⃗ represents the
load vector on node D, find four more vector equations that must be satisfied for each of the
other four nodes of the truss.

C

A

D

B

E

Figure 34 A simple truss

A : ?

B : ?

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : ?

E : ?



Civil Engineering: Trusses and Struts

Remark A.1.6 The five vector equations may be written as follows.

A : F⃗AC + F⃗AD + F⃗AB = 0⃗

B : F⃗BA + F⃗BD + F⃗BE = 0⃗

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : F⃗DC + F⃗DA + F⃗DB + F⃗DE + L⃗ = 0⃗

E : F⃗EB + F⃗ED + N⃗E = 0⃗



Civil Engineering: Trusses and Struts

Observation A.1.7 Each vector has a vertical and horizontal component, so it may be
treated as a vector in R2. Note that F⃗CA must have the same magnitude (but opposite
direction) as F⃗AC .

F⃗CA = x

[
cos(60◦)
sin(60◦)

]
= x

[
1/2√
3/2

]
F⃗AC = x

[
cos(−120◦)
sin(−120◦)

]
= x

[
−1/2

−
√
3/2

]



Civil Engineering: Trusses and Struts

Activity A.1.8 To write a linear system that models the truss under consideration with
constant load 10000 newtons, how many scalar variables will be required?

• 7: 5 from the nodes, 2 from the anchors

• 9: 7 from the struts, 2 from the anchors

• 11: 7 from the struts, 4 from the anchors

• 12: 7 from the struts, 4 from the anchors, 1 from the load

• 13: 5 from the nodes, 7 from the struts, 1 from the load

C

A

D

B

E

Figure 35 A simple truss



Civil Engineering: Trusses and Struts

Observation A.1.9 Since the angles for each strut are known, one variable may be used to
represent each.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 36 Variables for the truss
For example:

F⃗AB = −F⃗BA = x1

[
cos(0)
sin(0)

]
= x1

[
1
0

]
F⃗BE = −F⃗EB = x5

[
cos(−60◦)
sin(−60◦)

]
= x5

[
1/2

−
√
3/2

]



Civil Engineering: Trusses and Struts

Observation A.1.10 Since the angle of the normal forces for each anchor point is unknown,
two variables may be used to represent each.

C

A

D

B

E

Figure 37 Truss with normal forces

N⃗C =

[
y1
y2

]
N⃗D =

[
z1
z2

]
The load vector is constant.

L⃗ =

[
0

−10000

]



Civil Engineering: Trusses and Struts

Remark A.1.11 Each of the five vector equations found previously represent two linear
equations: one for the horizontal component and one for the vertical.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 38 Variables for the truss

C : F⃗CA + F⃗CD + N⃗C = 0⃗

⇔ x2

[
cos(60◦)
sin(60◦)

]
+ x6

[
cos(0◦)
sin(0◦)

]
+

[
y1
y2

]
=

[
0
0

]
√
3/2 ≈ 0.866

⇔ x2

[
0.5
0.866

]
+ x6

[
1
0

]
+ y1

[
1
0

]
+ y2

[
0
1

]
=

[
0
0

]



Civil Engineering: Trusses and Struts

Activity A.1.12 Expand the vector equation given below using sine and cosine of appro-
priate angles, then compute each component (approximating

√
3/2 ≈ 0.866).

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 39 Variables for the truss

D : F⃗DA + F⃗DB + F⃗DC + F⃗DE = −L⃗

⇔ x3

[
cos( ? )
sin( ? )

]
+ x4

[
cos( ? )
sin( ? )

]
+ x6

[
cos( ? )
sin( ? )

]
+ x7

[
cos( ? )
sin( ? )

]
=

[
?
?

]
⇔ x3

[
?
?

]
+ x4

[
?
?

]
+ x6

[
?
?

]
+ x7

[
?
?

]
=

[
?
?

]



Civil Engineering: Trusses and Struts

Observation A.1.13 The full augmented matrix given by the ten equations in this linear
system is shown below, where the eleven columns correspond to x1, . . . , x7, y1, y2, z1, z2, and
the ten rows correspond to the horizontal and vertical components of the forces acting at
A, . . . , E.

1 −0.5 0.5 0 0 0 0 0 0 0 0 0
0 −0.866 −0.866 0 0 0 0 0 0 0 0 0
−1 0 0 −0.5 0.5 0 0 0 0 0 0 0
0 0 0 −0.866 −0.866 0 0 0 0 0 0 0
0 0.5 0 0 0 1 0 1 0 0 0 0
0 0.866 0 0 0 0 0 0 1 0 0 0
0 0 −0.5 0.5 0 −1 1 0 0 0 0 0
0 0 0.866 0.866 0 0 0 0 0 0 0 10000
0 0 0 0 −0.5 0 −1 0 0 1 0 0
0 0 0 0 0.866 0 0 0 0 0 1 0





Civil Engineering: Trusses and Struts

Observation A.1.14 This matrix row-reduces to the following.

∼



1 0 0 0 0 0 0 0 0 0 0 −5773.7
0 1 0 0 0 0 0 0 0 0 0 −5773.7
0 0 1 0 0 0 0 0 0 0 0 5773.7
0 0 0 1 0 0 0 0 0 0 0 5773.7
0 0 0 0 1 0 0 0 0 0 0 −5773.7
0 0 0 0 0 1 0 0 0 −1 0 2886.8
0 0 0 0 0 0 1 0 0 −1 0 2886.8
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 5000
0 0 0 0 0 0 0 0 0 0 1 5000





Civil Engineering: Trusses and Struts

Observation A.1.15 Thus we know the truss must satisfy the following conditions.

x1 = x2 = x5 = −5882.4

x3 = x4 = 5882.4

x6 = x7 = 2886.8 + z1

y1 = −z1

y2 = z2 = 5000

In particular, the negative x1, x2, x5 represent tension (forces pointing into the nodes), and
the positive x3, x4 represent compression (forces pointing out of the nodes). The vertical
normal forces y2 + z2 counteract the 10000 load.

C

A

D

B

E

Figure 40 Completed truss



Computer Science: PageRank

A.2 Computer Science: PageRank
Activity A.2.1 The $2,110,000,000,000 Problem.

In the picture below, each circle represents a webpage, and each arrow represents a link
from one page to another.

1

2 3

4 5 6

7

Figure 41 A seven-webpage network
Based on how these pages link to each other, write a list of the 7 webpages in order from

most important to least important.



Computer Science: PageRank

Observation A.2.2 The $2,110,000,000,000 Idea. Links are endorsements. That is:

1. A webpage is important if it is linked to (endorsed) by important pages.

2. A webpage distributes its importance equally among all the pages it links to (endorses).



Computer Science: PageRank

Example A.2.3 Consider this small network with only three pages. Let x1, x2, x3 be the
importance of the three pages respectively.

1

2 3
Figure 42 A three-webpage network

1. x1 splits its endorsement in half between x2 and x3

2. x2 sends all of its endorsement to x1

3. x3 sends all of its endorsement to x2.

This corresponds to the page rank system:

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

□



Computer Science: PageRank

Observation A.2.4

1

2 3
Figure 43 A three-webpage network

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

 0 1 0
1
2

0 1
1
2

0 0

 x1

x2

x3

 =

 x1

x2

x3



By writing this linear system in terms of matrix multiplication, we obtain the page rank

matrix A =

 0 1 0
1
2

0 1
1
2

0 0

 and page rank vector x⃗ =

 x1

x2

x3

.

Thus, computing the importance of pages on a network is equivalent to solving the matrix
equation Ax⃗ = 1x⃗.



Computer Science: PageRank

Activity A.2.5 Thus, our $2,110,000,000,000 problem is what kind of problem? 0 1 0
1
2

0 1
2

1
2

0 0

 x1

x2

x3

 = 1

 x1

x2

x3


A. An antiderivative problem

B. A bijection problem

C. A cofactoring problem

D. A determinant problem

E. An eigenvector problem



Computer Science: PageRank

Activity A.2.6 Find a page rank vector x⃗ satisfying Ax⃗ = 1x⃗ for the following network’s
page rank matrix A.

That is, find the eigenspace associated with λ = 1 for the matrix A, and choose a vector
from that eigenspace.

1

2 3
Figure 44 A three-webpage network

A =

 0 1 0
1
2

0 1
1
2

0 0





Computer Science: PageRank

Observation A.2.7 Row-reducing A − I =

 −1 1 0
1
2

−1 1
1
2

0 −1

 ∼

 1 0 −2
0 1 −2
0 0 0

 yields the

basic eigenvector

 2
2
1

.

Therefore, we may conclude that pages 1 and 2 are equally important, and both pages
are twice as important as page 3.



Computer Science: PageRank

Activity A.2.8 Compute the 7× 7 page rank matrix for the following network.

1

2 3

4 5 6

7

Figure 45 A seven-webpage network
For example, since website 1 distributes its endorsement equally between 2 and 4, the

first column is



0
1
2

0
1
2

0
0
0


.



Computer Science: PageRank

Activity A.2.9 Find a page rank vector for the given page rank matrix.

A =



0 1
2

0 0 0 0 0
1
2

0 0 1 0 0 1
2

0 1
2

0 0 0 0 0
1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 1
2

0
0 0 0 0 1

2
0 0

0 0 1
2

0 1
2

1
2

0



1

2 3

4 5 6

7

Figure 46 A seven-webpage network
Which webpage is most important?
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Observation A.2.10 Since a page rank vector for the network is given by x⃗, it’s reasonable
to consider page 2 as the most important page.

x⃗ =



2
4
2
2.5
0
0
1


Based on this page rank vector, here is a complete ranking of all seven pages from most

important to least important:
2, 4, 1, 3, 7, 5, 6

1

2 3

4 5 6

7

Figure 47 A seven-webpage network



Computer Science: PageRank

Activity A.2.11 Given the following diagram, use a page rank vector to rank the pages 1
through 7 in order from most important to least important.

1 2 3 4

5 6 7

Figure 48 Another seven-webpage network



Geology: Phases and Components

A.3 Geology: Phases and Components
Definition A.3.1 In geology, a phase is any physically separable material in the system,
such as various minerals or liquids.

A component is a chemical compound necessary to make up the phases; these are
usually oxides such as Calcium Oxide (CaO) or Silicon Dioxide (SiO2).

In a typical application, a geologist knows how to build each phase from the components,
and is interested in determining reactions among the different phases. ♢



Geology: Phases and Components

Observation A.3.2 Consider the 3 components

c⃗1 = CaO c⃗2 = MgO and c⃗3 = SiO2

and the 5 phases:

p⃗1 = Ca3MgSi2O8 p⃗2 = CaMgSiO4 p⃗3 = CaSiO3

p⃗4 = CaMgSi2O6 p⃗5 = Ca2MgSi2O7

Geologists already know (or can easily deduce) that

p⃗1 = 3c⃗1 + c⃗2 + 2c⃗3 p⃗2 = c⃗1 + c⃗2 + c⃗3 p⃗3 = c⃗1 + 0c⃗2 + c⃗3

p⃗4 = c⃗1 + c⃗2 + 2c⃗3 p⃗5 = 2c⃗1 + c⃗2 + 2c⃗3

since, for example:
c⃗1 + c⃗3 = CaO + SiO2 = CaSiO3 = p⃗3



Geology: Phases and Components

Activity A.3.3 To study this vector space, each of the three components c⃗1, c⃗2, c⃗3 may be
considered as the three components of a Euclidean vector.

p⃗1 =

 3
1
2

 , p⃗2 =

 1
1
1

 , p⃗3 =

 1
0
1

 , p⃗4 =

 1
1
2

 , p⃗5 =

 2
1
2

 .

Determine if the set of phases is linearly dependent or linearly independent.



Geology: Phases and Components

Activity A.3.4 Geologists are interested in knowing all the possible chemical reactions
among the 5 phases:

p⃗1 = Ca3MgSi2O8 =

 3
1
2

 p⃗2 = CaMgSiO4 =

 1
1
1

 p⃗3 = CaSiO3 =

 1
0
1



p⃗4 = CaMgSi2O6 =

 1
1
2

 p⃗5 = Ca2MgSi2O7 =

 2
1
2

 .

That is, they want to find numbers x1, x2, x3, x4, x5 such that

x1p⃗1 + x2p⃗2 + x3p⃗3 + x4p⃗4 + x5p⃗5 = 0.

(a) Set up a system of equations equivalent to this vector equation.

(b) Find a basis for its solution space.

(c) Interpret each basis vector as a vector equation and a chemical equation.



Geology: Phases and Components

Activity A.3.5 We found two basis vectors


1
−2
−2
1
0

 and


0
−1
−1
0
1

, corresponding to the

vector and chemical equations

2p⃗2 + 2p⃗3 = p⃗1 + p⃗4 2CaMgSiO4 + 2CaSiO3 = Ca3MgSi2O8 + CaMgSi2O6

p⃗2 + p⃗3 = p⃗5 CaMgSiO4 + CaSiO3 = Ca2MgSi2O7

Combine the basis vectors to produce a chemical equation among the five phases that
does not involve p⃗2 = CaMgSiO4.



Appendix B

Appendix

B.1 Sample Exercises with Solutions
Here we model one exercise and solution for each learning objective. Your solutions should
not look identical to those shown below, but these solutions can give you an idea of the level
of detail required for a complete solution.
Example B.1.1 LE1. Consider the vector equation

x1

 4
−3
3

+ x2

 4
−3
3

+ x3

 3
1
3

+ x4

 18
−7
15

 =

 −11
5
−9


(a) Write a corresponding system of equations.

Solution.
4 x1 + 4 x2 + 3 x3 + 18 x4 = −11
−3 x1 − 3 x2 + x3 − 7 x4 = 5
3 x1 + 3 x2 + 3 x3 + 15 x4 = −9

(b) Write a corresponding augmented matrix.

Solution.  4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9


□

433



Sample Exercises with Solutions

Example B.1.2 LE2.
(a) For each of the following matrices, explain why it is not in reduced row echelon form.

(i)

A =

 0 0 1 0 −2
1 5 0 −2 1
0 0 0 0 0



Solution. A =

 0 0 1 0 −2

1 5 0 −2 1
0 0 0 0 0

 is not in reduced row echelon form

because the pivots are not descending to the right.
(ii)

B =

 1 −6 3 0 −1
0 0 0 7 14
0 0 0 0 0



Solution. B =

 1 −6 3 0 −1

0 0 0 7 14
0 0 0 0 0

 is not in reduced row echelon form

because a leading term has a value besides 1.
(iii)

C =

 1 7 −4 1 12
0 1 −1 0 2
0 0 0 0 0



Solution. C =

 1 7 −4 1 12

0 1 −1 0 2
0 0 0 0 0

 is not in reduced row echelon form

because there is a non-zero entry above or below a pivot.

(b) Use technology to find

RREF

 4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9


Solution.  4 4 3 18 −11

−3 −3 1 −7 5
3 3 3 15 −9

∼

 1 1 0 3 −2

0 0 1 2 −1
0 0 0 0 0


(c) Show step by step how to find

RREF

 4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9


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Solution. 4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9

 R1+R2→R1∼

 1 1 4 11 −6
−3 −3 1 −7 5
3 3 3 15 −9


R2+3R1→R2

R3−3R1→R3∼

 1 1 4 11 −6
0 0 13 26 −13
0 0 −9 −18 9


1
13

R2→R2

1
9
R3→R3∼

 1 1 4 11 −6

0 0 1 2 −1
0 0 −1 −2 1


R1−4R2→R1

R3+R1→R3∼

 1 1 0 3 −2

0 0 1 2 −1
0 0 0 0 0


□
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Example B.1.3 LE3. Consider each of the following systems of linear equations or vector
equations.

(a)
x1 − x2 + x3 = 4

x2 − 2 x3 = −1
x2 − 2 x3 = −3

x1 + 2 x2 − 5 x3 = 0

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

1 −1 1 4
0 1 −2 −1
0 1 −2 −3
1 2 −5 0

 ∼


1 0 −1 0
0 1 −2 0
0 0 0 1
0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − x3 = 0
x2 − 2 x3 = 0

0 = 1
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Because 0 = 1 is false, the solution set has no solutions. This means
the solution set is ∅.

(b)
−x1 + x2 + x3 = 2
−3 x1 + x2 − 4 x3 = −9
2 x1 − x2 + 2 x3 = 5
−6 x1 + 3 x2 − 4 x3 = −9

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

−1 1 1 2
−3 1 −4 −9
2 −1 2 5
−6 3 −4 −9

 ∼


1 0 0 −2
0 1 0 −3
0 0 1 3
0 0 0 0


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The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 = −2
x2 = −3

x3 = 3
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Since each variable is equal to a fixed value, there exists only one

solution. The solution set is


 −2

−3
3

.

(c)
x1 + 4 x2 − 14 x3 = 11
−x1 − 3 x2 + 11 x3 = −8
−x1 − 3 x2 + 11 x3 = −8

3 x2 − 9 x3 = 9

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

1 4 −14 11
−1 −3 11 −8
−1 −3 11 −8
0 3 −9 9

 ∼


1 0 −2 −1
0 1 −3 3
0 0 0 0
0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − 2 x3 = −1
x2 − 3 x3 = 3

0 = 0
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Since the simplified system obtained from the RREF calculation has
no contradictions, but has equations with multiple variables, the solution set has
infinitely-many solutions.

□
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Example B.1.4 LE4. Consider the following vector equation.

x1


1
0
1
1

+ x2


−2
0
−2
−2

+ x3


−5
1
−5
−2

+ x4


13
−2
13
7

+ x5


−14
3

−14
−5

 =


18
−3
18
9


(a) Explain how to find a simpler linear system that has the same solution set.

Solution. The given linear system is represented by this augmented matrix, which
row reduces as follows:

1 −2 −5 13 −14 18
0 0 1 −2 3 −3
1 −2 −5 13 −14 18
1 −2 −2 7 −5 9

 ∼


1 −2 0 3 1 3
0 0 1 −2 3 −3
0 0 0 0 0 0
0 0 0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − 2 x2 + 3 x4 + x5 = 3
x3 − 2 x4 + 3 x5 = −3

0 = 0
0 = 0

(b) Explain how to describe this solution set using set notation.

Solution. We can assign free variables for each of the non-pivot columns: x2 = a,
x4 = b, and x5 = c:

x1 − 2 a + 3 b + c = 3
x3 − 2 b + 3 c = −3

Then we may solve for the bound variables x1 and x3:

x1 = 2a− 3b− c+ 3

x3 = 2b− 3c− 3

Therefore, the solution set is




2 a− 3 b− c+ 3

a
2 b− 3 c− 3

b
c


∣∣∣∣∣∣∣∣∣∣
a, b, c ∈ R

.

□
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Example B.1.5 EV1. Consider each of these claims about a vector equation.

(a)

 −13
3

−15

 is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.

(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim.
Solution. The vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−15


has at least one solution.

(ii) Determine if the statement you wrote is true or false.

Solution. RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −15

 =

 1 2 3 0 0
0 0 0 1 0
0 0 0 0 1


The bottom row requires 0 = 1. Therefore the vector equation has no solutions,

so

 −13
3

−15

 is not a linear combination.

(iii) If your statement was true, explain and demonstrate how to construct a specific

linear combination of

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

 that equals

 −13
3

−15

.

Solution. N/A

(b)

 −13
3

−13

is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.

(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim.
Solution. The vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−13


has at least one solution.

(ii) Determine if the statement you wrote is true or false.

Solution. RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −13

 =

 1 2 3 0 2
0 0 0 1 3
0 0 0 0 0


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No row requires 0 = 1. Therefore vector equation has at least one solution, so −13
3

−13

 is a linear combination.

(iii) If your statement was true, explain and demonstrate how to construct a specific

linear combination of

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

 that equals

 −13
3

−13

.

Solution 1. By setting the free variables x2 = 0 and x3 = 0, we obtain the
equations x1 = 2 and x4 = 3. Therefore we may construct

2

 1
0
1

+ 3

 −5
1
−5

 =

 −13
3

−13

 .

Solution 2. By trial and error, we may find that

1

 2
0
2

+ 3

 −5
1
−5

 =

 2− 15
0 + 3
2− 15

 =

 −13
3

−13

 .

□
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Example B.1.6 EV2.
(a) Consider the set of vectors


−1
1
0
2

 ,


0
−1
1
−3

 ,


2
−2
1
−2

 ,


−3
−1
4
−5

 ,


7
8

−15
28




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors spans R4.”
Solution. The vector equation

x1


−1
1
0
2

+ x2


0
−1
1
−3

+ x3


2
−2
1
−2

+ x4


−3
−1
4
−5

+ x5


7
8

−15
28

 = w⃗

has at least one solution for every w⃗ ∈ R4.
(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution. Note that RREF


−1 0 2 −3 7
1 −1 −2 −1 8
0 1 1 4 −15
2 −3 −2 −5 28

 =


1 0 0 0 2
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 −3

 has no row of zeros that would allow a 0 = 1 contra-

diction.
Therefore the vector equation has solutions for every w⃗, and thus the set of vectors
does span R4.

(b) Consider the set of vectors


1
1
−2
0

 ,


0
1
−2
3

 ,


−4
−2
5
5

 ,


12
3
−9
−24




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors spans R4.”
Solution. The vector equation

x1


1
1
−2
0

+ x2


0
1
−2
3

+ x3


−4
−2
5
5

+ x4


12
3
−9
−24

 = w⃗

has at least one solution for every w⃗ ∈ R4.
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(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution. Note that RREF


1 0 −4 12
1 1 −2 3
−2 −2 5 −9
0 3 5 −24

 =


1 0 0 0
0 1 0 −3
0 0 1 −3
0 0 0 0

 has a

row of zeros that makes a 0 = 1 contradiction possible.
Therefore the vector equation will not have solutions for every w⃗, and thus the
set of vectors does not span R4.

(c) Consider the set of vectors 


1
0
1
1

 ,


−5
1
−5
−2

 ,


12
−2
12
6




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors spans R4.”
Solution. The vector equation

x1


1
0
1
1

+ x2


−5
1
−5
−2

+ x3


12
−2
12
6

 = w⃗

has at least one solution for every w⃗ ∈ R4.
(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution 1. Note that RREF


1 −5 12
0 1 −2
1 −5 12
1 −2 6

 =


1 0 2
0 1 −2
0 0 0
0 0 0

 has a row of

zeros that makes a 0 = 1 contradiction possible.
Therefore the vector equation will not have solutions for every w⃗, and thus the
set of vectors does not span R4.
Solution 2. It takes at least 4 vectors to span R4, so the equation cannot always
have solutions and the set cannot span.

□
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Example B.1.7 EV3. Answer the following questions about Euclidean subspaces.

(a) Consider the following subsets of Euclidean space R4 defined by

U =




x
y
z
w


∣∣∣∣∣∣∣∣y

2 − 7 z2 = x

 and W =




x
y
z
w


∣∣∣∣∣∣∣∣−5w − 7 x− y = −7 z


Without writing a proof, explain why only one of these subsets is likely to be a subspace.

Solution. W appears to be a subspace as its equation is a linear combination of
variables and constant scalars, and U is likely not due to its equation having squared
terms.

(b) Consider the following subset of Euclidean space R3

Q =


 x

y
z

∣∣∣∣∣∣0 = 5 y2 − 5 x+ 3 z


Prove that Q is not a subspace.

Solution. Note that

 0
3

−15

 belongs to Q, since

5(3)2 − 5(0) + 3(−15) = 45− 45 = 0,

but 2

 0
3

−15

 =

 0
6

−30

 does not, since

5(6)2 − 5(0) + 3(−30) = 180− 90 = 90 ̸= 0.

(c) Consider the following subset of Euclidean space R3

R =


 x

y
z

∣∣∣∣∣∣5 x− 5 y = −4 z


Prove that R is a subspace.

Solution.

• First, note that

 0
0
0

 ∈ R since 5(0)− 5(0) = 0 and −4(0) = 0 as well.
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• Let

 x
y
z

 ∈ R so that 5 x−5 y = −4 z, and let

 a
b
c

 ∈ R so that 5 a−5 b = −4 c.

We may then compute

5(x+ a)− 5(y + b) = 5x+ 5a− 5y − 5b

= (5x− 5y) + (5a− 5b)

= (−4z) + (−4c)

= −4(z + c)

So 5(x+a)−5(y+b) = −4(z+c) and therefore

 x
y
z

+

 a
b
c

 =

 x+ a
y + b
z + c

 ∈ R,

showing R is closed under addition.

• Let

 x
y
z

 ∈ R so that 5 x− 5 y = −4 z, and let k ∈ R be a scalar. We may then

compute

5x− 5y = −4z

⇒ k[5x− 5y] = k[−4z]

⇒ 5kx− 5ky = −4kz

⇒ 5(kx)− 5(ky) = −4(kz)

and therefore k

 x
y
z

 =

 kx
ky
kz

 ∈ R, showing R is closed under scalar multipli-

cation.

□
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Example B.1.8 EV4.

(a) Consider the set of vectors


−3
3
3
−4

 ,


9
−9
−9
12

 ,


1
−2
−3
2

 ,


−11
13
15
−16


 .

(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is linearly independent.”
Solution. The vector equation

x1


−3
3
3
−4

+ x2


9
−9
−9
12

+ x3


1
−2
−3
2

+ x4


−11
13
15
−16

 =


0
0
0
0



has exactly one solution:


0
0
0
0

.

(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution. RREF


−3 9 1 −11
3 −9 −2 13
3 −9 −3 15
−4 12 2 −16

 =


1 −3 0 3
0 0 1 −2
0 0 0 0
0 0 0 0


Since the RREF matrix has two non-pivot columns (the second and fourth), the
solution set has free variables and thus there are more than one solution. This
means the set is linearly dependent.

(b) Consider the set of vectors


1
−1
0
1

 ,


−3
4
3
1

 ,


−5
5
1
−2

 ,


−15
17
8
−1

 ,


2
−5
−7
−4


 .

(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is linearly independent.”
Solution. The vector equation

x1


1
−1
0
1

+ x2


−3
4
3
1

+ x3


−5
5
1
−2

+ x4


−15
17
8
−1

+ x5


2
−5
−7
−4

 =


0
0
0
0


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has exactly one solution:


0
0
0
0
0

.

(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution 1. RREF


1 −3 −5 −15 2
−1 4 5 17 −5
0 3 1 8 −7
1 1 −2 −1 −4

 =


1 0 0 1 3
0 1 0 2 −3
0 0 1 2 2
0 0 0 0 0


Since the RREF matrix has two non-pivot columns (the fourth and fifth), the
solution set has free variables and thus there are more than one solution. This
means the set is linearly dependent.
Solution 2. Since these vectors are from R4 and there are more than 4 vectors,
the equation must have infinitely-many solutions and the set must be linearly
dependent.

(c) Consider the set of vectors 


−3
2
1
0

 ,


−2
1
0
0

 ,


5
−5
−4
−2




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is linearly independent.”
Solution. The vector equation

x1


−3
2
1
0

+ x2


−2
1
0
0

+ x3


5
−5
−4
−2

 =


0
0
0
0



has exactly one solution:

 0
0
0

.

(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution. RREF


−3 −2 5
2 1 −5
1 0 −4
0 0 −2

 =


1 0 0
0 1 0
0 0 1
0 0 0


Since the RREF matrix has all pivot columns, the solution set lacks free variables
and thus there is exactly one solution. This means the set is linearly independent.

□
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Example B.1.9 EV5.
(a) Consider the set of vectors


1
−2
0
1

 ,


2
−4
0
2

 ,


3
−6
0
3

 ,


5
−5
−2
4




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is a basis for”
Solution. The vector equation

x1


1
−2
0
1

+ x2


2
−4
0
2

+ x3


3
−6
0
3

+ x4


5
−5
−2
4

 = w⃗

has exactly one solution for every w⃗ ∈ R4.
(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution 1. Since RREF


1 2 3 5
−2 −4 −6 −5
0 0 0 −2
1 2 3 4

 =


1 2 3 0
0 0 0 1
0 0 0 0
0 0 0 0

, we see

from the zero row that there are some vectors w⃗ for which the equation is not
true, so the set fails to span and therefore fails to be a basis.

Solution 2. Since RREF


1 2 3 5
−2 −4 −6 −5
0 0 0 −2
1 2 3 4

 =


1 2 3 0
0 0 0 1
0 0 0 0
0 0 0 0

, we see

from the non-pivot column that there are some vectors w⃗ for which the equa-
tion has infinitely-many solutions, so the set is linearly dependent and therefore
fails to be a basis.

(b) Consider the set of vectors 


1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is a basis for”
Solution. The vector equation

x1


1
3
4
−4

+ x2


−1
−3
−4
4

+ x3


0
1
3
−3

 = w⃗
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has exactly one solution for every w⃗ ∈ R4.
(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution 1. Since RREF


1 −1 0
3 −3 1
4 −4 3
−4 4 −3

 =


1 −1 0
0 0 1
0 0 0
0 0 0

 we see from the

zero row that there are some vectors w⃗ for which the equation is not true, so the
set fails to span and therefore fails to be a basis.
Solution 2. The set has only three vectors, so the set cannot span and there
must be vectors for which the equation has no solutions. Therefore the set is not
a basis.

(c) Consider the set of vectors


3
2
−1
0

 ,


−2
−1
0
−1

 ,


−2
−1
1
0

 ,


−4
−1
0
−2




(i) Write a statement involving the solutions of a vector equation that’s equivalent
to this claim: “The set of vectors is a basis for”
Solution. The vector equation

x1


3
2
−1
0

+ x2


−2
−1
0
−1

+ x3


−2
−1
1
0

+ x4


−4
−1
0
−2

 = w⃗

has exactly one solution for every w⃗ ∈ R4.
(ii) Explain and demonstrate how to determine whether or not this statement is true.

Solution. Since RREF


3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 we see the

equation always has exactly one solution (each row and column has a pivot).
Therefore the set is spanning and linearly independent, and therefore the set is a
basis.

□
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Example B.1.10 EV6. Consider the subspace

W = span




1
−3
−1
2

 ,


1
0
1
−2

 ,


3
−6
−1
2

 ,


1
6
1
−1

 ,


2
3
0
1


 .

(a) Explain how to find a basis of W .

Solution. Observe that

RREF


1 1 3 1 2
−3 0 −6 6 3
−1 1 −1 1 0
2 −2 2 −1 1

 =


1 0 2 0 1
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0


If we remove the vectors yielding non-pivot columns, the resulting set will span the
same vectors while being linearly independent. Therefore


1
−3
−1
2

 ,


1
0
1
−2

 ,


1
6
1
−1




is a basis of W .

(b) Explain how to find the dimension of W .

Solution. Since this (and thus every other) basis has three vectors in it, the dimen-
sion of W is 3.

□
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Example B.1.11 EV7. Consider the homogeneous system of equations
x1 + x2 +3x3 + x4 +2x5 =0

−3x1 − 6x3 +6x4 +3x5 =0

−x1 + x2 − x3 + x4 =0

2x1 − 2x2 +2x3 − x4 + x5 =0

(a) Find the solution space of the system.
Solution. Observe that

RREF


1 1 3 1 2 0
−3 0 −6 6 3 0
−1 1 −1 1 0 0
2 −2 2 −1 1 0

 =


1 0 2 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0


Letting x3 = a and x5 = b (since those correspond to the non-pivot columns), this is
equivalent to the system

x1 +2x3 + x5 =0

x2 + x3 =0

x3 =a

x4 + x5 =0

x5 =b

Thus, the solution set is 


−2a− b

−a
a
−b
b


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R

 .

(b) Find a basis of the solution space.
Solution. Since we can write

−2a− b
−a
a
−b
b

 = a


−2
−1
1
0
0

+ b


−1
0
0
−1
1

 ,

a basis for the solution space is


−2
−1
1
0
0

 ,


−1
0
0
−1
1


 .

□
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Example B.1.12 AT1. Answer the following questions about transformations.

1. Consider the following maps of Euclidean vectors P : R3 → R3 and Q : R3 → R3

defined by

P

 x
y
z

 =

 3 x− y + z
2 x− 2 y + 4 z
−2 x− 2 y − 3 z

 and Q

 x
y
z

 =

 y − 2 z
−3 x− 4 y + 12 z

5 xy + 3 z

 .

Without writing a proof, explain why only one of these maps is likely to be a linear
transformation.

2. Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
−3 xy

]
.

Prove that S is not a linear transformation.

3. Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
−4 x− 5 y
2 x− 4 y

]
.

Prove that T is a linear transformation.

Solution.

1. A linear map between Euclidean spaces must consist of linear polynomials in each
component. All three components of P are linear so P is likely to be linear; however,
the third component of Q contains the nonlinear term xy, so Q is unlikely to be linear.

2. We need to show either that S fails to preserve either vector addition or that S fails
to preserve scalar multiplication.

We can test if S preserves scalar multiplication for c = −1 and
[
1
1

]
∈ R2. We

compute
S

(
−1

[
1
1

])
= S

([
−1
−1

])
=

[
−1− 2
−3

]
=

[
−3
−3

]
whereas

−1S

([
1
1

])
= −1

[
1 + 2
−3

]
=

[
−3
3

]
.

Since
[
−3
−3

]
̸=

[
−3
3

]
, S fails to preserve scalar multiplication and thus cannot be a

linear transformation.

Alternatively, we could test preservation of vector addition for
[
1
1

]
,

[
2
2

]
∈ R2.

S

([
1
1

]
+

[
2
2

])
= S

([
3
3

])
=

[
3 + 2(3)
−3(3)(3)

]
=

[
9

−27

]
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whereas

S

([
1
1

])
+S

([
2
2

])
=

[
1 + 2(1)
−3(1)(1)

]
+

[
2 + 2(2)
−3(2)(2)

]
=

[
3
−3

]
+

[
6

−12

]
=

[
9

−15

]
.

Since
[

9
−27

]
̸=

[
9

−15

]
, S fails to preserve addition and thus cannot be a linear

transformation.

3. We need to show that T preserves both vector addition and that T preserves scalar
multiplication.

First, let us take two vectors
[
x1

y1

]
,

[
x2

y2

]
∈ R2 and compute

T

([
x1

y1

]
+

[
x2

y2

])
= T

([
x1 + x2

y1 + y2

])
=

[
−4(x1 + x2)− 5(y1 + y2)
2(x1 + x2)− 4(y1 + y2)

]
and

T

([
x1

y1

])
+T

([
x2

y2

])
=

[
−4x1 − 5y1
2x1 − 4y1

]
+

[
−4x2 − 5y2
2x2 − 4y2

]
=

[
−4x1 − 5y1 − 4x2 − 5y2
2x1 − 4y1 + 2x2 − 4y2

]

So we see that T

([
x1

y1

]
+

[
x2

y2

])
= T

([
x1

y1

])
+ T

([
x2

y2

])
, so T preserves

addition.

Now, take a scalar c ∈ R and a vector
[
x
y

]
∈ R2, and compute

T

(
c

[
x
y

])
= T

([
cx
cy

])
=

[
−4cx− 5cy
2cx− 4cy

]
and

cT

([
x
y

])
= c

[
−4x− 5y
2x− 4y

]
=

[
−4cx− 5cy
2cx− 4cy

]
.

We see that T

(
c

[
x
y

])
= cT

([
x
y

])
, so T preserves scalar multiplication.

Since T preserves both addition and scalar multiplication, we have proven that T is a
linear transformation.

□
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Example B.1.13 AT2.
1. Find the standard matrix for the linear transformation T : R3 → R4 given by

T

 x
y
z

 =


−x+ y

−x+ 3y − z
7x+ y + 3z

0

 .

2. Let S : R4 → R3 be the linear transformation given by the standard matrix 2 3 4 1
0 1 −1 −1
3 −2 −2 4

 .

Compute S




−2
1
3
2


.

Solution.
1. Since

T

 1
0
0

 =


−1
−1
7
0



T

 0
1
0

 =


1
3
1
0



T

 0
0
1

 =


0
−1
3
0

 ,

the standard matrix for T is


−1 1 0
−1 3 −1
7 1 3
0 0 0

.

2.

S




−2
1
3
2


 = −2S(e⃗1) + S(e⃗2) + 3S(e⃗3) + 2S(e⃗4)

= −2

 2
0
3

+

 3
1
−2

+ 3

 4
−1
−2

+ 2

 1
−1
4

 =

 13
−4
−6

 .
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□
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Example B.1.14 AT3. Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x+ 3y + 2z − 3w
2x+ 4y + 6z − 10w
x+ 6y − z + 3w


1. Explain how to find the image of T and the kernel of T .

2. Explain how to find a basis of the image of T and a basis of the kernel of T .

3. Explain how to find the rank and nullity of T, and why the rank-nullity theorem holds
for T.

Solution.

1. To find the image we compute

Im(T ) = T (span {e⃗1, e⃗2, e⃗3, e⃗4})

= span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)}

= span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

 .

2. The kernel is the solution set of the corresponding homogeneous system of equations,
i.e.

x+3y+2z− 3w = 0

2x+4y+6z−10w = 0

x+6y− z+ 3w =0.

So we compute

RREF

 1 3 2 −3 0
2 4 6 −10 0
1 6 −1 3 0

 =

 1 0 5 −9 0
0 1 −1 2 0
0 0 0 0 0

 .

Then, letting z = a and w = b we have

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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3. Since Im(T ) = span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

, we simply need to find a

linearly independent subset of these four spanning vectors. So we compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .

Since the first two columns are pivot columns, they form a linearly independent span-

ning set, so a basis for ImT is


 1

2
1

 ,

 3
4
6

 .

To find a basis for the kernel, note that

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R



=

a


−5
1
1
0

+ b


9
−2
0
1


∣∣∣∣∣∣∣∣ a, b ∈ R


= span




−5
1
1
0

 ,


9
−2
0
1


 .

so a basis for the kernel is 


−5
1
1
0

 ,


9
−2
0
1


 .

4. The dimension of the image (the rank) is 2, the dimension of the kernel (the nullity) is
2, and the dimension of the domain of T is 4, so we see 2 + 2 = 4, which verifies that
the sum of the rank and nullity of T is the dimension of the domain of T .

□
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Example B.1.15 AT4. Let T : R4 → R3 be the linear transformation given by the

standard matrix

 1 3 2 −3
2 4 6 −10
1 6 −1 3

.

1. Explain why T is or is not injective.

2. Explain why T is or is not surjective.

Solution. Compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .

1. Note that the third and fourth columns are non-pivot columns, which means kerT
contains infinitely many vectors, so T is not injective.

2. Since there are only two pivots, the image (i.e. the span of the columns) is a 2-
dimensional subspace (and thus does not equal R3), so T is not surjective.

□
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Example B.1.16 AT5. Let V be the set of all pairs of numbers (x, y) of real numbers
together with the following operations:

(x1, y1)⊕ (x2, y2) = (2x1 + 2x2, 2y1 + 2y2)

c⊙ (x, y) = (cx, c2y)

1. Show that scalar multiplication distributes over vector addition:

c⊙ ((x1, y1)⊕ (x2, y2)) = c⊙ (x1, y1)⊕ c⊙ (x2, y2)

2. Explain why V nonetheless is not a vector space.

Solution.

1. We compute both sides:

c⊙ ((x1, y1)⊕ (x2, y2)) = c⊙ (2x1 + 2x2, 2y1 + 2y2)

= (c(2x1 + 2x2), c
2(2y1 + 2y2))

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

and

c⊙ (x1, y1)⊕ c⊙ (x2, y2) = (cx1, c
2y1)⊕ (cx2, c

2y2)

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

Since these are the same, we have shown that the property holds.

2. To show V is not a vector space, we must show that it fails one of the 8 defining
properties of vector spaces. We will show that scalar multiplication does not distribute
over scalar addition, i.e., there are values such that

(c+ d)⊙ (x, y) ̸= c⊙ (x, y)⊕ d⊙ (x, y)

• (Solution method 1) First, we compute

(c+ d)⊙ (x, y) = ((c+ d)x, (c+ d)2y)

= ((c+ d)x, (c2 + 2cd+ d2)y).

Then we compute

c⊙ (x, y)⊕ d⊙ (x, y) = (cx, c2y)⊕ (dx, d2y)

= (2cx+ 2dx, 2c2y + 2d2y).

Since (c+ d)x ̸= 2cx+ 2dy when c, d, x, y = 1, the property fails to hold.



Sample Exercises with Solutions

• (Solution method 2) When we let c, d, x, y = 1, we may simplify both sides as
follows.

(c+ d)⊙ (x, y) = 2⊙ (1, 1)

= (2 · 1, 22 · 1)
= (2, 4)

c⊙ (x, y)⊕ d⊙ (x, y) = 1⊙ (1, 1)⊕ 1⊙ (1, 1)

= (1 · 1, 12 · 1)⊕ (1 · 1, 12 · 1)
= (1, 1)⊕ (1, 1)

= (2 · 1 + 2 · 1, 2 · 1 + 2 · 1)
= (4, 4)

Since these ordered pairs are different, the property fails to hold.

□
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Example B.1.17 AT6.

1. Given the set{
x3 − 2 x2 + x+ 2, 2 x2 − 1,−x3 + 3 x2 + 3 x− 2, x3 − 6 x2 + 9 x+ 5

}
write a statement involving the solutions to a polynomial equation that’s equivalent to
each claim below.

• The set of polynomials is linearly independent.
• The set of polynomials is linearly dependent.

2. Explain how to determine which of these statements is true.

Solution. The set of polynomials{
x3 − 2 x2 + x+ 2, 2 x2 − 1,−x3 + 3 x2 + 3 x− 2, x3 − 6 x2 + 9 x+ 5

}
is linearly independent exactly when the polynomial equation

y1
(
x3 − 2 x2 + x+ 2

)
+y2

(
2 x2 − 1

)
+y3

(
−x3 + 3 x2 + 3 x− 2

)
+y4

(
x3 − 6 x2 + 9 x+ 5

)
= 0

has no nontrivial (i.e. nonzero) solutions. The set is linearly dependent when this equation
has a nontrivial (i.e. nonzero) solution.

To solve this equation, we distribute and then collect coefficients to obtain

(y1 − y3 + y4) x
3+(−2y1 + 2y2 + 3y3 − 6y4) x

2+(y1 + 3y3 + 9y4) x+(2y1 − y2 − 2y3 + 5y4) = 0.

These polynomials are equal precisely when their coefficients are equal, leading to the system

y1 − y3 + y4 = 0
−2y1 + 2y2 + 3y3 − 6y4 = 0
y1 + + 3y3 + 9y4 = 0
2y1 − y2 − 2y3 + 5y4 = 0

.

To solve this, we compute

RREF


1 0 −1 1 0
−2 2 3 −6 0
1 0 3 9 0
2 −1 −2 5 0

 =


1 0 0 3 0
0 1 0 −3 0
0 0 1 2 0
0 0 0 0 0


The system has (infintely many) nontrivial solutions, so we that the set of polynomials

is linearly dependent. □
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Example B.1.18 MX1. Of the following three matrices, only two may be multiplied.

A =

[
−1 3 −2 −3
1 −4 2 3

]
B =

[
1 −6 −1
0 1 0

]
C =


1 −1 −1
0 1 −2
−2 4 −1
−2 3 −1


(a) Explain which two can be multiplied and why.

Solution. C is the 4× 3 standard matrix for a transformation of R3 vectors into R4

vectors, and A is the 2 × 4 matrix for a transformation of R4 vectors into R2 vectors,
so AC will be the 2× 3 standard matrix for their composition, a transformation of R3

vectors into R2 vectors.

(b) Find their product using technology.

Solution.

A = [
-1 3 -2 -3
1 4 2 3
]
C = [
1 -1 -1
0 1 -2
-2 4 -1
-2 3 -1
]
A*C

A =

-1 3 -2 -3
1 4 2 3

C =

1 -1 -1
0 1 -2
-2 4 -1
-2 3 -1

ans =

9 -13 0
-9 20 -14

(c) Show how to find this product without technology.
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Solution. We may compute each ACe⃗i to obtain each column of AC:

ACe⃗1 = A


1
0
−2
−2

 = 1

[
−1
1

]
+ 0

[
−1
1

]
− 2

[
−1
1

]
− 2

[
−1
1

]
=

[
9
−9

]

ACe⃗2 = A


−1
1
4
3

 = −1

[
−1
1

]
+ 1

[
−1
1

]
+ 4

[
−1
1

]
+ 3

[
−1
1

]
=

[
−13
12

]

ACe⃗3 = A


−1
−2
−1
−1

 = −1

[
−1
1

]
− 1

[
−1
1

]
− 2

[
−1
1

]
− 1

[
−1
1

]
=

[
0
2

]

□
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Example B.1.19 MX2. Consider each of the following matrices.

(a)

D =


2 1 3 1
−1 0 −2 −2
−1 0 −1 −3
2 1 5 0


(i) Explain why this matrix is or is not invertible by discussing its corresponding

linear transformation.
Solution. First, we calculate RREF(D):

RREF


2 1 3 1
−1 0 −2 −2
−1 0 −1 −3
2 1 5 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Since RREF(D) = I, we conclude that D is invertible.
(ii) If the matrix is invertible, use technology to find its inverse.

Solution. Using technology, its inverse is


4 −7 6 −4
−3 9 −7 4
−1 1 −1 1
−1 2 −2 1

.

(iii) If the matrix is invertible, explain and demonstrate how to find the 4th column
of this inverse using a technique that could be performed without technology
(though you may use technology for this exercise).
Solution. We find the 4th column of the inverse matrix by solving the equation
Dx⃗ = e⃗4. Since

RREF


2 1 3 1 0
−1 0 −2 −2 0
−1 0 −1 −3 0
2 1 5 0 1

 =


1 0 0 0 −4
0 1 0 0 4
0 0 1 0 1
0 0 0 1 1

 ,

the 4th column of the inverse is


−4
4
1
1

.

(iv) If the matrix is invertible, explain how to use it with technology to solve the
vector equation

x1


2
−1
−1
2

+ x2


1
0
0
1

+ x3


3
−2
−1
5

+ x4


1
−2
−3
0

 =


−18
6
0

−28

 .
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Solution. To solve the equation Dx⃗ =


−18
6
0

−28

 , we left-multiply by D−1 to

get

x⃗ = D−1


−18
6
0

−28

 .

Since 
4 −7 6 −4
−3 9 −7 4
−1 1 −1 1
−1 2 −2 1




−18
6
0

−28

 =


−2
−4
−4
2

 ,

the solution is x⃗ =


−2
−4
−4
2

.

(b)

N =


1 −2 1 0
0 0 1 −3
5 −10 1 12
−2 4 −1 −3


(i) Explain why this matrix is or is not invertible by discussing its corresponding

linear transformation.
Solution.

RREF


1 −2 1 0
0 0 1 −3
5 −10 1 12
−2 4 −1 −3

 =


1 −2 0 3
0 0 1 −3
0 0 0 0
0 0 0 0


N is not invertible.

(ii) If the matrix is invertible, use technology to find its inverse.
Solution. N/A

(iii) If the matrix is invertible, explain and demonstrate how to find the column of this
inverse using a technique that could be performed without technology (though
you may use technology for this exercise).
Solution. N/A
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(iv) If the matrix is invertible, explain how to use it with technology to solve the
vector equation

x1


1
0
5
−2

+ x2


−2
0

−10
4

+ x3


1
1
1
−1

+ x4


0
−3
12
−3

 =


2

−10
50
−14

 .

Solution. N/A

□
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Example B.1.20 MX3. Let B =


−2
−2
1

 ,

−1
−2
−1

 ,

13
2

, and v⃗ =

12
3

.

(a) Explain and demonstrate how to verify that B is a basis of R3 and how to calculate
MB, the change-of-basis matrix from the standard basis of R3 to B.

Solution. We can accomplish both tasks by calculating the RREF of the following
matrix:

RREF

 −2 −1 1 1 0 0
−2 −2 3 0 1 0
1 −1 2 0 0 1

 =

 1 0 0 1 −1 1
0 1 0 −7 5 −4
0 0 1 −4 3 −2

 .

The fact that the matrix to the left of the vertical bar is the identity matrix tells that B
is a basis. The matrix on the right hand side of the bar is equal to the change-of-basis
matrix:

MB =

 1 −1 1
−7 5 −4
−4 3 −2

 .

(b) Explain and demonstrate how to use MB to express v⃗ in terms of B-basis vectors.

Solution. By definition of the change of basis matrix, if v⃗ =

12
3

, then the coordi-

nates of v⃗ with respect to B are given by:

MBv⃗ = MB =

 1 −1 1
−7 5 −4
−4 3 −2

12
3

 =

 2
−9
−4

 .

It follows that: 12
3

 = 2

−2
−2
1

− 9

−1
−2
−1

− 4

13
2

 .

□
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Example B.1.21 MX4.

(a) Give a 3× 3 matrix C that may be used to perform the row operation −5R1 → R1.

Answer.

I =

 1 0 0
0 1 0
0 0 1

 −5R1→R1∼

 −5 0 0
0 1 0
0 0 1

 = C

(b) Give a 3× 3 matrix M that may be used to perform the row operation R1 ↔ R3.

Answer.

I =

 1 0 0
0 1 0
0 0 1

 R1↔R3∼

 0 0 1
0 1 0
1 0 0

 = M

(c) Give a 3× 3 matrix P that may be used to perform the row operation R3− 2R2 → R3.

Answer.

I =

 1 0 0
0 1 0
0 0 1

 R3−2R2→R3∼

 1 0 0
0 1 0
0 −2 1

 = P

(d) Give a 3× 3 matrix that may be used to first apply −5R1 → R1, then R3− 2R2 → R3,
and finally R1 ↔ R3 (note the order).

Answer. MPC =

 0 −2 1
0 1 0
−5 0 0



(e) Show how to manually apply those row operations to A =

 1 −3 −3
2 −6 −5
0 0 2

, then use

technology to verify that your matrix in the previous task gives the same result.

Answer.  1 −3 −3
2 −6 −5
0 0 2

 ∼

 −5 15 15
2 −6 −5
0 0 2


∼

 −5 15 15
2 −6 −5
−4 12 12

 ∼

 −4 12 12
2 −6 −5
−5 15 15


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C = [
-5 0 0
0 1 0
0 0 1

]

M = [
0 0 1
0 1 0
1 0 0

]

P = [
1 0 0
0 1 0
0 -2 1

]

M*P*C

A = [
1 -3 -3
2 -6 -5
0 0 2

]

M*P*C*A
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C =

-5 0 0
0 1 0
0 0 1

M =

0 0 1
0 1 0
1 0 0

P =

1 0 0
0 1 0
0 -2 1

ans =

0 -2 1
0 1 0
-5 0 0

A =

1 -3 -3
2 -6 -5
0 0 2

ans =

-4 12 12
2 -6 -5
-5 15 15

□
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Example B.1.22 GT1. Let A be any 4× 4 matrix with determinant 4.

(a) Let Q be the matrix obtained from A by applying the row operation R4 ↔ R1. Explain
and demonstrate how to find detQ without knowing the terms of A.

Solution. We apply this row operation to the identity matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∼


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 = R

so that Q = RA. It follows that

detQ = det(RA) = det(R)det(A) = (−1)(4) = −4.

(b) Let N be the matrix obtained from A by applying the row operation 3R4 → R4.
Explain and demonstrate how to find detN without knowing the terms of A.

Solution. We apply this row operation to the identity matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 = R

so that N = RA. It follows that

detN = det(RA) = det(R)det(A) = (3)(4) = 12.

(c) Let M be the matrix obtained from A by applying the row operation R4 − 3R2 → R4.
Explain and demonstrate how to find detM without knowing the terms of A.

Solution. We apply this row operation to the identity matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 −3 0 1

 = R

so that M = RA. It follows that

detM = det(RA) = det(R)det(A) = (1)(4) = 4.

□
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Example B.1.23 GT2. Show how to compute the determinant of the matrix

A =


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5


Solution. Here is one possible solution, first applying a single row operation, and then
performing Laplace/cofactor expansions to reduce the determinant to a linear combination
of 2× 2 determinants:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = (−1) det

 1 3 −1
1 1 3
−3 1 −5

+ (1) det

 1 3 0
1 1 1
−3 1 2


= (−1)

(
(1) det

[
1 3
1 −5

]
− (1) det

[
3 −1
1 −5

]
+ (−3) det

[
3 −1
1 3

])
+

(1)

(
(1) det

[
1 1
1 2

]
− (3) det

[
1 1
−3 2

])
= (−1) (−8 + 14− 30) + (1) (1− 15)

= 10

Here is another possible solution, using row and column operations to first reduce the deter-
minant to a 3× 3 matrix and then applying a formula:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 0
1 1 1 2
−3 1 2 −7



= − det


1 3 0 −1
1 1 1 2
0 0 1 0
−3 1 2 −7

 = − det

 1 3 −1
1 1 2
−3 1 −7


= −((−7− 18− 1)− (3 + 2− 21))

= 10

□
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Example B.1.24 GT3. Explain how to find the eigenvalues of the matrix
[
−2 −2
10 7

]
.

Solution. Compute the characteristic polynomial:

det(A− λI) = det
[
−2− λ −2

10 7− λ

]
= (−2− λ)(7− λ) + 20 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3)

The eigenvalues are the roots of the characteristic polynomial, namely 2 and 3. □
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Example B.1.25 GT4. Explain how to find a basis for the eigenspace associated to the
eigenvalue 3 in the matrix  −7 −8 2

8 9 −1
13
2

5 2

 .

Solution. The eigenspace associated to 3 is the kernel of A− 3I, so we compute

RREF(A− 3I) = RREF

 −7− 3 −8 2
8 9− 3 −1
13
2

5 2− 3

 =

RREF

 −10 −8 2
8 6 −1
13
2

5 −1

 =

 1 0 1
0 1 −3

2

0 0 0

 .

Thus we see the kernel is 
 −a

3
2
a
a

 ∣∣∣∣∣∣ a ∈ R


which has a basis of


 −1

3
2

1

. □
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