Skip to main content  Contents  
 Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   9.2   Convergence of Power Series (PS2) 
 
Learning Outcomes  
Subsection   9.2.1   Activities 
 
Activity   9.2.1 . 
 
Consider the series \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\)  where \(x\)  is a real number.
 
(a)  
If \(x=2\text{,}\)  then \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\text{.}\)   What can be said about this series?
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\)  converges.
 
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\)  diverges.
 
None of the  techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\)  converges or diverges.
 
 
 (b)  
If \(x=-100\text{,}\)  then \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\text{.}\)   What can be said about this series?
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\)  converges.
 
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\)  diverges.
 
None of the  techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\)  converges or diverges.
 
 
 (c)  
Suppose that \(x\)  were some arbitrary real number.  What can be said about this series?
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\)  converges.
 
The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\)  diverges.
 
None of the  techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\)  converges or diverges.
 
 
 
Activity   9.2.3 . 
 
Consider \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n.\) 
 
(a)  
Letting \(c_n=\frac{1}{n^2+1}\text{,}\)  find \(\displaystyle \lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right|\text{.}\) 
(b)  
For what values of \(x\)  is \(\displaystyle |x|\lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right| < 1\text{?}\) 
\(x < 1\text{.}\) 
 
\(0\leq x < 1\text{.}\) 
 
\(-1 < x < 1\text{.}\) 
 
 
 (c)  
If \(x=1\text{,}\)  does \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\)  converge?
(d)  
If \(x=-1\text{,}\)  does \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\)  converge?
(e)  
Which of the following describe the values of \(x\)  for which \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\)  converges?
\((-1,1)\text{.}\) 
 
\([-1,1)\text{.}\) 
 
\((-1,1]\text{.}\) 
 
\([-1,1]\text{.}\) 
 
 
 
Activity   9.2.4 . 
 
Consider \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n.\) 
 
(a)  
Letting \(c_n=\frac{2^n}{5^n}\text{,}\)  find \(\displaystyle \lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right|\text{.}\) 
(b)  
For what values of \(x\)  is \(\displaystyle |x-2|\lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right| < 1\text{?}\) 
\(-\frac{2}{5} < x < \frac{2}{5}\text{.}\) 
 
\(\frac{8}{5} < x < \frac{12}{5}\text{.}\) 
 
\(-\frac{5}{2} < x < \frac{5}{2}\text{.}\) 
 
\(-\frac{1}{2} < x < \frac{9}{2}\text{.}\) 
 
 
 (c)  
If \(x=\frac{9}{2}\text{,}\)  does \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\)  converge?
(d)  
If \(x=-\frac{1}{2}\text{,}\)  does \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\)  converge?
(e)  
Which of the following describe the values of \(x\)  for which \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\)  converges?
\((-\frac{1}{2},\frac{9}{2})\text{.}\) 
 
\([-\frac{1}{2},\frac{9}{2})\text{.}\) 
 
\((-\frac{1}{2},\frac{9}{2}]\text{.}\) 
 
\([-\frac{1}{2},\frac{9}{2}]\text{.}\) 
 
 
 
Activity   9.2.5 . 
 
Consider \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\left(x+\frac{1}{2}\right)^n.\) 
 
(a)  
Letting \(c_n=\frac{n^2}{n!}\text{,}\)  find \(\displaystyle \lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right|\text{.}\) 
(b)  
For what values of \(x\)  is \(\displaystyle \left|x+\frac{1}{2}\right|\lim_{n\to \infty} \left|\frac{c_{n+1}}{c_n}\right| < 1\text{?}\) 
\(0\leq x < \infty\text{.}\) 
 
All real numbers.
 
 
 (c)  
What describes the values of \(x\)  for which \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\left(x+\frac{1}{2}\right)^n\)  converges?
Fact   9.2.6 . 
 
Given the power series \(\displaystyle\sum c_n(x-a)^n\text{,}\)  the center of convergence  is \(x=a\text{.}\)   The radius of convergence  is
\begin{equation*}
r=\frac{1}{\displaystyle\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right|}.
\end{equation*}
If \(\displaystyle\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right|=0\text{,}\)  we say that \(r=\infty\text{.}\) 
  
The interval of convergence  represents all possible values of \(x\)  for which \(\displaystyle\sum c_n(x-a)^n\)  converges, which is of the form:
\(\displaystyle (a-r, a+r)\) 
 
\(\displaystyle [a-r, a+r)\) 
 
\(\displaystyle (a-r, a+r]\) 
 
\(\displaystyle [a-r, a+r]\) 
 
 
Depending on if \(\displaystyle\sum c_n(x-a)^n\)  converges when \(x=a-r\)  or \(x=a+r\text{.}\) 
  If \(r=\infty\)  the interval of convergence is all real numbers.
Activity   9.2.7 . 
 
Find the center of convergence, radius of convergence, and interval of convergence for the series:
\begin{equation*}
\sum_{n=0}^\infty \frac{3^{n} \left(-1\right)^{n} {\left(x - 1\right)}^{n}}{n!}.
\end{equation*}
 
Activity   9.2.8 . 
 
Find the center of convergence, radius of convergence, and interval of convergence for the series:
\begin{equation*}
\sum_{n=0}^\infty \frac{3^{n} {\left(x + 2\right)}^{n}}{n}.
\end{equation*}
 
Activity   9.2.9 . 
 
Consider the power series \(\displaystyle \sum_{n=0}^\infty \frac{2^n+1}{n3^n}\left(x+1\right)^n\text{.}\) 
 
(a)  
What is the center of convergence for this power series?
(b)  
What is the radius of convergence for this power series?
(c)  
What is the interval of convergence for this power series?
(d)  
If \(x=-0.5\text{,}\)  does this series converge? (Use the interval of convergence.)
(e)  
If \(x=1\text{,}\)  does this series converge? (Use the interval of convergence.)
Subsection   9.2.2   Videos 
 
Figure   189.    Video: Determine the interval of convergence for a given power series
Subsection   9.2.3   Exercises