Recall also that a linearly dependent set contains βredundantβ vectors. For example, only two of the three vectors in FigureΒ 14 are needed to span the planar subspace.
Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\text{.}\)
Mark the column of \(\RREF\left[\begin{array}{cccc}
2&2&2&1\\
3&0&-3&5\\
0&1&2&-1\\
1&-1&-3&0
\end{array}\right]\) that shows that \(W\)βs spanning set is linearly dependent.
Let \(W\) be a subspace of a vector space. A basis for \(W\) is a linearly independent set of vectors that spans \(W\) (but not necessarily the entire vector space).
So given a set \(S=\{\vec v_1,\dots,\vec v_m\}\text{,}\) to compute a basis for the subspace \(\vspan S\text{,}\) simply remove the vectors corresponding to the non-pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\) For example, since
the subspace \(W=\vspan\setList{
\left[\begin{array}{c}1\\2\\3\end{array}\right],
\left[\begin{array}{c}2\\4\\6\end{array}\right],
\left[\begin{array}{c}0\\-2\\-2\end{array}\right],
\left[\begin{array}{c}1\\0\\1\end{array}\right]
}\) has \(\setList{
\left[\begin{array}{c}1\\2\\3\end{array}\right],
\left[\begin{array}{c}0\\-2\\-2\end{array}\right]
}\) as a basis.
to conclude that the set \(\setList{
\left[\begin{array}{c}1\\2\\3\end{array}\right],
\left[\begin{array}{c}0\\-2\\-2\end{array}\right]
}\text{,}\) the set of vectors corresponding to the pivot columns of the RREF, is a basis for \(W\text{.}\)
Explain why neither of the vectors \(\left[\begin{array}{c}1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\end{array}\right]\) are elements of \(W\text{.}\)
Explain why this shows that, in general, when we calculate a basis for \(W=\vspan\{\vec{v}_1,\dots, \vec{v}_n\}\text{,}\) the pivot columns of \(\RREF[\vec{v}_1\dots \vec{v}_n]\) themselves do not form a basis for \(W\text{.}\)
If \(\{\vec{b}_1, \vec{b}_2,\ldots, \vec{b}_m\}\) and \(\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n\}\) are each a basis for a vector space \(V\text{,}\) then \(m=n.\)
If \(\{\vec{v}_1,\vec{v}_2\ldots, \vec{v}_n\}\) is linearly independent, then so is \(\{\vec{v}_1,\vec{v}_1 + \vec{v}_2, \ldots, \vec{v}_1 + \vec{v}_2 + \cdots + \vec{v}_n\}\text{.}\)
Let \(V\) be a vector space of dimension \(n\text{,}\) and \(\vec{v} \in V\text{.}\) Then there exists a basis for \(V\) which contains \(\vec{v}\text{.}\)
Suppose we have the set of all function \(f:S \rightarrow \mathbb{R}\text{.}\) We claim that this is a vector space under the usual operation of function addition and scalar multiplication. What is the dimension of this space for each choice of \(S\) below:
Suppose you have the vector space \(V = \left\{\left(\begin{array}{c}x\\y\\z\end{array}\right)\in \mathbb{R}^3: x + y + z = 1\right\}\) with the operations \(\left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right) \oplus \left(\begin{array}{c}x_2\\y_2\\z_2\end{array}\right) = \left(\begin{array}{c}x_1 + x_2 - 1\\y_1 + y_2\\z_1+z_2\end{array}\right) \mbox{ and } \alpha\odot\left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right) = \left(\begin{array}{c}\alpha x_1 - \alpha +1\\\alpha y_1\\\alpha z_1\end{array}\right).\) Find a basis for \(V\) and determine itβs dimension.