Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.4 Eigenvectors and Eigenspaces (GT4)
Learning Outcomes
Find a basis for the eigenspace of a
\(4\times 4\) matrix associated with a given eigenvalue.
Subsection 5.4.1 Warm Up
Activity 5.4.1 .
Which of the following vectors is an eigenvector for
\(A=\left[\begin{array}{cccc} 2 & 4 & -1 & -5 \\ 0 & 0 & -3 & -9 \\ 1 & 1 & 0 & 2 \\ -2 & -2 & 3 & 5 \end{array}\right]\text{?}\)
\(\displaystyle \left[\begin{matrix}-2\\1\\0\\1\end{matrix}\right]\)
\(\displaystyle \left[\begin{matrix}-3\\3\\-2\\1\end{matrix}\right]\)
Subsection 5.4.2 Class Activities
Activity 5.4.2 .
Itβs possible to show that
\(-2\) is an eigenvalue for
\(A=\left[\begin{array}{ccc}-1&4&-2\\2&-7&9\\3&0&4\end{array}\right]\text{.}\)
Compute the kernel of the transformation with standard matrix
\begin{equation*}
A-(-2)I
=
\left[\begin{array}{ccc} \unknown & 4&-2 \\ 2 & \unknown & 9\\3&0&\unknown \end{array}\right]
\end{equation*}
to find all the eigenvectors \(\vec x\) such that \(A\vec x=-2\vec x\text{.}\)
Definition 5.4.3 .
Since the kernel of a linear map is a subspace of
\(\IR^n\text{,}\) and the kernel obtained from
\(A-\lambda I\) contains all the eigenvectors associated with
\(\lambda\text{,}\) we call this kernel the
eigenspace of
\(A\) associated with
\(\lambda\text{.}\)
Activity 5.4.4 .
Find a basis for the eigenspace for the matrix
\(\left[\begin{array}{ccc}
0 & 0 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 3
\end{array}\right]\) associated with the eigenvalue
\(3\text{.}\)
Activity 5.4.5 .
Find a basis for the eigenspace for the matrix
\(\left[\begin{array}{cccc}
5 & -2 & 0 & 4 \\ 6 & -2 & 1 & 5 \\ -2 & 1 & 2 & -3 \\ 4 & 5 & -3 & 6
\end{array}\right]\) associated with the eigenvalue
\(1\text{.}\)
Activity 5.4.6 .
Find a basis for the eigenspace for the matrix
\(\left[\begin{array}{cccc}
4 & 3 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 2
\end{array}\right]\) associated with the eigenvalue
\(2\text{.}\)
Subsection 5.4.3 Individual Practice
Activity 5.4.7 .
Suppose that
\(T\colon\IR^2\to\IR^2\) is a linear transformation with standard matrix
\(A\text{.}\) Further, suppose that we know that
\(\vec{u}=\left[\begin{matrix}1\\-1\end{matrix}\right]\) and
\(\vec{v}=\left[\begin{matrix}2\\-3\end{matrix}\right]\) are eigenvectors corresponding to eigenvalues
\(2\) and
\(-3\) respectively.
(a)
Express the vector
\(\vec{w}=\left[\begin{matrix}2\\1\end{matrix}\right]\) as a linear combination of
\(\vec{u},\vec{v}\text{.}\)
(b)
Determine
\(T(\vec{w})\text{.}\)
Subsection 5.4.4 Videos
Figure 62. Video: Finding eigenvectors
Subsection 5.4.5 Exercises
Subsection 5.4.6 Mathematical Writing Explorations
Exploration 5.4.8 .
Given a matrix \(A\text{,}\) let \(\{\vec{v_1},\vec{v_2},\ldots,\vec{v_n}\}\) be the eigenvectors with associated distinct eigenvalues \(\{\lambda_1,\lambda_2,\ldots, \lambda_n\}\text{.}\) Prove the set of eigenvectors is linearly independent.
Subsection 5.4.7 Sample Problem and Solution