Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.1 Matrices and Multiplication (MX1)
Learning Outcomes
Subsection 4.1.1 Warm Up
Activity 4.1.1 .
Suppose that
\(T\colon V\to W\) is a linear transformation.
(a)
What is the definition of
\(\ker T\text{?}\) How does it relate to the domain of
\(T\text{?}\)
(b)
What is definition of
\(\Im T\text{?}\) How does it relate to the codomain of
\(T\text{?}\)
Subsection 4.1.2 Class Activities
Activity 4.1.3 .
Let \(T: \IR^3 \rightarrow \IR^2\) be defined by the \(2\times 3\) standard matrix \(B\) and \(S: \IR^2 \rightarrow \IR^4\) be defined by the \(4\times 2\) standard matrix \(A\text{:}\)
\begin{equation*}
B=\left[\begin{array}{ccc} 2 & 1 & -3 \\ 5 & -3 & 4 \end{array}\right]
\hspace{2em}
A=\left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \\ 3 & 5 \\ -1 & -2 \end{array}\right]\text{.}
\end{equation*}
(a)
What are the domain and codomain of the composition map
\(S \circ T\text{?}\)
The domain is
\(\IR ^3\) and the codomain is
\(\IR^2\)
The domain is
\(\IR ^2\) and the codomain is
\(\IR^4\)
The domain is
\(\IR ^3\) and the codomain is
\(\IR^4\)
The domain is
\(\IR ^4\) and the codomain is
\(\IR^3\)
(b)
What size will the standard matrix of
\(S \circ T\) be?
\(\displaystyle 4 \text{ (rows)} \times 3 \text{ (columns)}\)
\(\displaystyle 3 \text{ (rows)} \times 4 \text{ (columns)}\)
\(\displaystyle 3 \text{ (rows)} \times 2 \text{ (columns)}\)
\(\displaystyle 2 \text{ (rows)} \times 4 \text{ (columns)}\)
(c)
Compute
\begin{equation*}
(S \circ T)(\vec{e}_1)
=
S(T(\vec{e}_1))
=
S\left(\left[\begin{array}{c} 2 \\ 5\end{array}\right]\right)
=
\left[\begin{array}{c}\unknown\\\unknown\\\unknown\\\unknown\end{array}\right].
\end{equation*}
(d)
Compute
\((S \circ T)(\vec{e}_2)
\text{.}\)
(e)
Compute
\((S \circ T)(\vec{e}_3)
\text{.}\)
(f)
Use
\((S \circ T)(\vec{e}_1),(S \circ T)(\vec{e}_2),(S \circ T)(\vec{e}_3)\) to write the standard matrix for
\(S \circ T\text{.}\)
Definition 4.1.4 .
We define the
product \(AB\) of a
\(m \times n\) matrix
\(A\) and a
\(n \times k\) matrix
\(B\) to be the
\(m \times k\) standard matrix of the composition map of the two corresponding linear functions.
For the previous activity, \(T\) was a map \(\IR^3 \rightarrow \IR^2\text{,}\) and \(S\) was a map \(\IR^2 \rightarrow \IR^4\text{,}\) so \(S \circ T\) gave a map \(\IR^3 \rightarrow \IR^4\) with a \(4\times 3\) standard matrix:
\begin{equation*}
AB
=
\left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \\ 3 & 5 \\ -1 & -2 \end{array}\right]
\left[\begin{array}{ccc} 2 & 1 & -3 \\ 5 & -3 & 4 \end{array}\right]
\end{equation*}
\begin{equation*}
=
\left[
(S \circ T)(\vec{e}_1) \hspace{1em}
(S\circ T)(\vec{e}_2) \hspace{1em}
(S \circ T)(\vec{e}_3)
\right]
=
\left[\begin{array}{ccc}
12 & -5 & 5 \\
5 & -3 & 4 \\
31 & -12 & 11 \\
-12 & 5 & -5
\end{array}\right]
.
\end{equation*}
Activity 4.1.5 .
Let
\(S: \IR^3 \rightarrow \IR^2\) be given by the matrix
\(A=\left[\begin{array}{ccc} -4 & -2 & 3 \\ 0 & 1 & 1 \end{array}\right]\) and
\(T: \IR^2 \rightarrow \IR^3\) be given by the matrix
\(B=\left[\begin{array}{cc} 2 & 3 \\ 1 & -1 \\ 0 & -1 \end{array}\right]\text{.}\)
(a)
Write the dimensions (rows
\(\times\) columns) for
\(A\text{,}\) \(B\text{,}\) \(AB\text{,}\) and
\(BA\text{.}\)
(b)
Find the standard matrix
\(AB\) of
\(S \circ T\text{.}\)
(c)
Find the standard matrix
\(BA\) of
\(T \circ S\text{.}\)
Activity 4.1.6 .
Consider the following three matrices.
\begin{equation*}
A = \left[\begin{array}{ccc}1&0&-3\\3&2&1\end{array}\right]
\hspace{2em}
B = \left[\begin{array}{ccccc}2&2&1&0&1\\1&1&1&-1&0\\0&0&3&2&1\\-1&5&7&2&1\end{array}\right]
\hspace{2em}
C = \left[\begin{array}{cc}2&2\\0&-1\\3&1\\4&0\end{array}\right]
\end{equation*}
(a)
Find the domain and codomain of each of the three linear maps corresponding to
\(A\text{,}\) \(B\text{,}\) and
\(C\text{.}\)
(b)
Only one of the matrix products
\(AB,AC,BA,BC,CA,CB\) can actually be computed. Compute it.
Activity 4.1.7 .
Let
\(B=\left[\begin{array}{ccc} 3 & -4 & 0 \\ 2 & 0 & -1 \\ 0 & -3 & 3 \end{array}\right]\text{,}\) and let
\(A=\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]\text{.}\)
(a)
Compute the product
\(BA\) by hand.
(b)
Check your work using technology. Using Octave:
B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A
Activity 4.1.8 .
Of the following three matrices, only two may be multiplied.
\begin{equation*}
A=\left[\begin{array}{cccc}
-1 & 3 & -2 & -3 \\
1 & -4 & 2 & 3
\end{array}\right] \hspace{1em} B=\left[\begin{array}{ccc}
1 & -6 & -1 \\
0 & 1 & 0
\end{array}\right] \hspace{1em} C=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & -2 \\
-2 & 4 & -1 \\
-2 & 3 & -1
\end{array}\right]
\end{equation*}
Explain which two can be multiplied and why. Then show how to find their product.
Activity 4.1.9 .
Let
\(T\left(\left[\begin{array}{c}x\\y \end{array}\right]\right)=
\left[\begin{array}{c} x+2y \\ y \\ 3x +5y \\ -x-2y \end{array}\right]\) In
FactΒ 3.2.12 we adopted the notation
\begin{equation*}
T\left(\left[\begin{array}{c}x\\y \end{array}\right]\right)=
\left[\begin{array}{c} x+2y \\ y \\ 3x +5y \\ -x-2y \end{array}\right]=
A
\left[\begin{array}{c}x\\y \end{array}\right] =
\left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \\ 3 & 5 \\ -1 & -2 \end{array}\right]
\left[\begin{array}{c}x\\y \end{array}\right] \text{.}
\end{equation*}
Verify that \(\left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \\ 3 & 5 \\ -1 & -2 \end{array}\right]
\left[\begin{array}{c}x\\y \end{array}\right] =
\left[\begin{array}{c} x+2y \\ y \\ 3x +5y \\ -x-2y \end{array}\right]\) in terms of matrix multiplication.
Subsection 4.1.3 Individual Practice
Activity 4.1.10 .
Given two
\(n\times n\) matrices
\(A\) and
\(B\text{,}\) explain why the sentence "Multiply the matrices
\(A\) and
\(B \) together." is ambiguous. How could you re-write the sentence in order to eliminate the ambiguity?
Subsection 4.1.4 Videos
Figure 41. Video: Multiplying matrices
Subsection 4.1.5 Exercises
Subsection 4.1.6 Mathematical Writing Explorations
Exploration 4.1.11 .
Construct 3 matrices, \(A,B,\mbox{ and } C\text{,}\) such that
\(\displaystyle AB:\mathbb{R}^4\rightarrow\mathbb{R}^2\)
\(\displaystyle BC:\mathbb{R}^2\rightarrow\mathbb{R}^3\)
\(\displaystyle CA:\mathbb{R}^3\rightarrow\mathbb{R}^4\)
\(\displaystyle ABC:\mathbb{R}^2\rightarrow\mathbb{R}^2\)
Exploration 4.1.12 .
Construct 3 examples of matrix multiplication, with all matrix dimensions at least 2.
Where \(A\) and \(B\) are not square, but \(AB\) is square.
Where \(AB = BA\text{.}\)
Where \(AB \neq BA\text{.}\)
Exploration 4.1.13 .
Use the included map in this problem.
Figure 42. Adjacency map, showing roads between 5 cities
An adjacency matrix for this map is a matrix that has the number of roads from city \(i\) to city \(j\) in the \((i,j)\) entry of the matrix. A road is a path of length exactly 1. All \((i,i)\) entries are 0. Write the adjacency matrix for this map, with the cities in alphabetical order.
What does the square of this matrix tell you about the map? The cube? The \(n\) -th power?
Subsection 4.1.7 Sample Problem and Solution