Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.1 Linear Systems, Vector Equations, and Augmented Matrices (LE1)
Learning Outcomes
Translate back and forth between a system of linear equations, a vector equation, and the corresponding augmented matrix.
Subsection 1.1.1 Warm Up
Activity 1.1.1 .
Consider the pairs of lines described by the equations below. Decide which of these are parallel, identical, or transverse (i.e., intersect in a single point).
(a)
\begin{align*}
-x_1+3x_2 &= 1\\
2x_1-5x_2 &= 2
\end{align*}
(b)
\begin{align*}
-x_1+3x_2 &= 1\\
2x_1-6x_2 &= -2
\end{align*}
(c)
\begin{align*}
-x_1+3x_2 &= 1\\
2x_1-6x_2 &= 3
\end{align*}
Subsection 1.1.2 Class Activities
Definition 1.1.2 .
A matrix is an \(m\times n\) array of real numbers with \(m\) rows and \(n\) columns:
\begin{equation*}
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{array}\right]
=
\left[\begin{array}{cccc} \vec v_1 & \vec v_2 & \cdots & \vec v_n\end{array}\right]\text{.}
\end{equation*}
Frequently we will use matrices to describe an ordered list of its column vectors :
\begin{equation*}
\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m1} \\
\end{array}\right],
\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m2} \\
\end{array}\right],\cdots,
\left[\begin{array}{c}
a_{1n} \\
a_{2n} \\
\vdots \\
a_{mn} \\
\end{array}\right] =
\vec v_1, \vec v_2, \cdots, \vec v_n\text{.}
\end{equation*}
When order is irrelevant, we will use set notation:
\begin{equation*}
\left\{
\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m1} \\
\end{array}\right],
\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m2} \\
\end{array}\right],\cdots,
\left[\begin{array}{c}
a_{1n} \\
a_{2n} \\
\vdots \\
a_{mn} \\
\end{array}\right]\right\} =
\{\vec v_1, \vec v_2, \cdots, \vec v_n\}\text{.}
\end{equation*}
Definition 1.1.3 .
A Euclidean vector is an ordered list of real numbers
\begin{equation*}
\left[\begin{array}{c}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{array}\right]\text{.}
\end{equation*}
We will find it useful to almost always typeset Euclidean vectors vertically, but the notation \(\left[\begin{array}{cccc}a_1 & a_2 & \cdots & a_n\end{array}\right]^T\) is also valid when vertical typesetting is inconvenient. The set of all Euclidean vectors with \(n\) components is denoted as \(\mathbb R^n\text{,}\) and vectors are often described using the notation \(\vec v\text{.}\)
Each number in the list is called a component , and we use the following definitions for the sum of two vectors, and the product of a real number and a vector:
\begin{equation*}
\left[\begin{array}{c}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{array}\right]+
\left[\begin{array}{c}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{array}\right]=
\left[\begin{array}{c}
a_1+b_1 \\
a_2+b_2 \\
\vdots \\
a_n+b_n
\end{array}\right]
\hspace{3em}
c
\left[\begin{array}{c}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{array}\right]=
\left[\begin{array}{c}
ca_1 \\
ca_2 \\
\vdots \\
ca_n
\end{array}\right]
\end{equation*}
Example 1.1.4 .
Following are some examples of addition and scalar multiplication in \(\mathbb R^4\text{.}\)
\begin{equation*}
\left[\begin{array}{c}
3 \\
-3 \\
0 \\
4
\end{array}\right]+
\left[\begin{array}{c}
0 \\
2 \\
7 \\
1
\end{array}\right]=
\left[\begin{array}{c}
3+0 \\
-3+2 \\
0+7 \\
4+1
\end{array}\right]=
\left[\begin{array}{c}
3 \\
-1 \\
7 \\
5
\end{array}\right]
\end{equation*}
\begin{equation*}
-4
\left[\begin{array}{c}
0 \\
2 \\
-2 \\
3
\end{array}\right]=
\left[\begin{array}{c}
-4(0) \\
-4(2)\\
-4(-2) \\
-4(3)
\end{array}\right]=
\left[\begin{array}{c}
0 \\
-8 \\
8 \\
-12
\end{array}\right]
\end{equation*}
Definition 1.1.5 .
A linear equation is an equation of the variables \(x_i\) of the form
\begin{equation*}
a_1x_1+a_2x_2+\dots+a_nx_n=b\text{.}
\end{equation*}
A solution for a linear equation is a Euclidean vector
\begin{equation*}
\left[\begin{array}{c}
s_1 \\
s_2 \\
\vdots \\
s_n
\end{array}\right]
\end{equation*}
that satisfies
\begin{equation*}
a_1s_1+a_2s_2+\dots+a_ns_n=b
\end{equation*}
(that is, a Euclidean vector whose components can be plugged into the equation).
Definition 1.1.7 .
A system of linear equations (or a linear system for short) is a collection of one or more linear equations.
\begin{alignat*}{5}
a_{11}x_1 &\,+\,& a_{12}x_2 &\,+\,& \dots &\,+\,& a_{1n}x_n &\,=\,& b_1 \\
a_{21}x_1 &\,+\,& a_{22}x_2 &\,+\,& \dots &\,+\,& a_{2n}x_n &\,=\,& b_2\\
\vdots& &\vdots& && &\vdots&&\vdots \\
a_{m1}x_1 &\,+\,& a_{m2}x_2 &\,+\,& \dots &\,+\,& a_{mn}x_n &\,=\,& b_m
\end{alignat*}
Its solution set is given by
\begin{equation*}
\setBuilder
{
\left[\begin{array}{c}
s_1 \\
s_2 \\
\vdots \\
s_n
\end{array}\right]
}{
\left[\begin{array}{c}
s_1 \\
s_2 \\
\vdots \\
s_n
\end{array}\right]
\text{is a solution to all equations in the system}
}\text{.}
\end{equation*}
Definition 1.1.10 .
A linear system is
consistent if its solution set is non-empty (that is, there exists a solution for the system). Otherwise it is
inconsistent .
Fact 1.1.11 .
All linear systems are one of the following:
Consistent with one solution: its solution set contains a single vector, e.g. \(\setList{\left[\begin{array}{c}1\\2\\3\end{array}\right]}\)
Consistent with infinitely-many solutions : its solution set contains infinitely many vectors, e.g. \(\setBuilder
{
\left[\begin{array}{c}1\\2-3a\\a\end{array}\right]
}{
a\in\IR
}\)
Inconsistent : its solution set is the empty set, denoted by either \(\{\}\) or \(\emptyset\text{.}\)
Activity 1.1.12 .
All inconsistent linear systems contain a logical contradiction . Find a contradiction in this system to show that its solution set is the empty set.
\begin{align*}
-x_1+2x_2 &= 5\\
2x_1-4x_2 &= 6
\end{align*}
Activity 1.1.13 .
Consider the following consistent linear system.
\begin{align*}
-x_1+2x_2 &= -3\\
2x_1-4x_2 &= 6
\end{align*}
(a)
Find several different solutions for this system:
\begin{equation*}
\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \hspace{3em}
\left[\begin{array}{c}
\unknown \\
2
\end{array}\right] \hspace{3em}
\left[\begin{array}{c}
0 \\
\unknown
\end{array}\right] \hspace{3em}
\left[\begin{array}{c}
\unknown \\
\unknown
\end{array}\right] \hspace{3em}
\left[\begin{array}{c}
\unknown \\
\unknown
\end{array}\right]
\end{equation*}
(b)
Suppose we let
\(x_2=a\) where
\(a\) is an arbitrary real number. Which of these expressions for
\(x_1\) in terms of
\(a\) satisfies both equations of the linear system?
\(\displaystyle x_1=-3a\)
\(\displaystyle x_1=3\)
\(\displaystyle x_1=2a+3\)
\(\displaystyle x_1=-4a+6\)
(c)
Given \(x_2=a\) and the expression you found in the previous task, which of these describes the solution set for this system?
\(\displaystyle \setBuilder
{
\left[\begin{array}{c}
2a+3 \\
a
\end{array}\right]
}{
a \in \IR
}\)
\(\displaystyle \setBuilder
{
\left[\begin{array}{c}
a \\
2a+3
\end{array}\right]
}{
a \in \IR
}\)
\(\displaystyle \setBuilder
{
\left[\begin{array}{c}
a \\
b
\end{array}\right]
}{
a \in \IR
}\)
\(\displaystyle \setBuilder
{
\left[\begin{array}{c}
2a+3 \\
2b-3
\end{array}\right]
}{
a \in \IR
}\)
Activity 1.1.14 .
Consider the following linear system.
\begin{alignat*}{5}
x_1 &\,+\,& 2x_2 &\, \,& &\,-\,& x_4 &\,=\,& 3\\
&\, \,& &\, \,& x_3 &\,+\,& 4x_4 &\,=\,& -2
\end{alignat*}
Substitute \(x_2=a\) and \(x_4=b\text{,}\) and then solve for \(x_1\) and \(x_3\text{:}\)
\begin{equation*}
x_1 = \unknown \hspace{6em} x_3 = \unknown \hspace{6em}
\end{equation*}
Then use these to describe the solution set
\begin{equation*}
\setBuilder
{
\left[\begin{array}{c}
\hspace{3em}\unknown\hspace{3em} \\
a \\
\unknown \\
b
\end{array}\right]
}{
a,b \in \IR
}
\end{equation*}
to the linear system.
Definition 1.1.17 .
A system of \(m\) linear equations with \(n\) variables is often represented by writing its coefficients and constants in an augmented matrix : the \(m\times n\) matrix of its coefficients augmented with the \(m\) constant values as a final column.
\begin{alignat*}{5}
a_{11}x_1 &\,+\,& a_{12}x_2 &\,+\,& \dots &\,+\,& a_{1n}x_n &\,=\,& b_1\\
a_{21}x_1 &\,+\,& a_{22}x_2 &\,+\,& \dots &\,+\,& a_{2n}x_n &\,=\,& b_2\\
\vdots& &\vdots& && &\vdots&&\vdots\\
a_{m1}x_1 &\,+\,& a_{m2}x_2 &\,+\,& \dots &\,+\,& a_{mn}x_n &\,=\,& b_m
\end{alignat*}
\begin{equation*}
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & b_1\\
a_{21} & a_{22} & \cdots & a_{2n} & b_2\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{array}\right]
\end{equation*}
Sometimes, we will find it useful to refer only to the coefficients of the linear system (and ignore its constant terms). We call the \(m\times n\) array consisting of these coefficients a coefficient matrix .
\begin{equation*}
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{array}\right]
\end{equation*}
Example 1.1.18 .
The corresponding augmented matrix for this system is obtained by simply writing the coefficients and constants in matrix form.
Linear system:
\begin{alignat*}{4}
x_1 && &\,+\,& 3x_3 &\,=\,& 3\\
3x_1 &\,-\,& 2x_2 &\,+\,& 4x_3 &\,=\,& 0\\
&\,-\,& x_2 &\,+\,& x_3 &\,=\,& -2
\end{alignat*}
Augmented matrix:
\begin{equation*}
\left[\begin{array}{ccc|c}
1 & 0 & 3 & 3 \\
3 & -2 & 4 & 0 \\
0 & -1 & 1 & -2
\end{array}\right]
\end{equation*}
Vector equation:
\begin{equation*}
x_1 \left[\begin{array}{c} 1 \\ 3 \\ 0 \end{array}\right]+ x_2 \left[\begin{array}{c} 0 \\ -2 \\ -1 \end{array}\right] + x_3 \left[\begin{array}{c} 3 \\ 4 \\1 \end{array}\right] = \left[\begin{array}{c} 3 \\ 0 \\ -2 \end{array}\right]
\end{equation*}
Subsection 1.1.3 Individual Practice
Activity 1.1.19 .
Consider the following augmented matrices. For each of them, decide how many variables and how many equations the corresponding linear system has.
(a)
\begin{equation*}
\left[\begin{array}{ccc|c}
2 & 1 & 3 & 3 \\
1 & -2 & 4 & 3 \\
3 & -1 & 7 & -1
\end{array}\right]
\end{equation*}
(b)
\begin{equation*}
\left[\begin{array}{ccc|c}
2 & 1 & 3 & 3 \\
1 & -2 & 4 & 3 \\
3 & -1 & 7 & -1 \\
3 & -1 & 7 & -1
\end{array}\right]
\end{equation*}
(c)
\begin{equation*}
\left[\begin{array}{ccc|c}
2 & 0 & 3 & 3 \\
1 & 0 & 4 & 3 \\
3 & 0 & 7 & -1 \\
3 & 0 & 7 & -1
\end{array}\right]
\end{equation*}
(d)
\begin{equation*}
\left[\begin{array}{ccc|c}
2 & 1 & 3 & 3 \\
1 & -2 & 4 & 3 \\
0 & 0 & 0 & 0 \\
3 & -1 & 7 & -1
\end{array}\right]
\end{equation*}
Subsection 1.1.4 Videos
Figure 1. Video: Converting between systems, vector equations, and augmented matrices
Subsection 1.1.5 Exercises
Subsection 1.1.6 Mathematical Writing Explorations
Exploration 1.1.20 .
Choose a value for the real constant
\(k\) such that the following system has one, many, or no solutions. In each case, write the solution set.
Consider the linear system:
\begin{alignat*}{2}
x_1 - x_2 &\,=\,& 1\\
3x_1 - 3x_2 &\,=\,& k
\end{alignat*}
Exploration 1.1.21 .
Consider the linear system:
\begin{alignat*}{2}
ax_1 + bx_2 &\,=\,& j\\
cx_1 + dx_2 &\,=\,& k
\end{alignat*}
Assume \(j\) and \(k\) are arbitrary real numbers.
Choose values for \(a,b,c\text{,}\) and \(d\text{,}\) such that \(ad-bc = 0\text{.}\) Show that this system is inconsistent.
Prove that, if \(ad-bc \neq 0\text{,}\) the system is consistent with exactly one solution.
Exploration 1.1.22 .
Given a set
\(S\text{,}\) we can define a relation between two arbitrary elements
\(a,b \in S\text{.}\) If the two elements are related, we denote this
\(a \sim b\text{.}\)
Any relation on a set \(S\) that satisfies the properties below is an equivalence relation .
Reflexive : For any \(a \in S, a \sim a\)
Symmetric : For \(a,b \in S\text{,}\) if \(a\sim b\text{,}\) then \(b \sim a\)
Transitive: for any \(a,b,c \in S, a \sim b \mbox{ and } b \sim c \mbox{ implies } a\sim c\)
For each of the following relations, show that it is or is not an equivalence relation.
For \(a,b, \in \mathbb{R}\text{,}\) \(a \sim b\) if an only if \(a \leq b\text{.}\)
For \(a,b, \in \mathbb{R}\text{,}\) \(a \sim b\) if an only if \(|a|=|b|\text{.}\)
Subsection 1.1.7 Sample Problem and Solution