Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.1 Introduction to Exponentials (EL1)
Objectives
Determine if a given function is exponential. Find an equation of an exponential function. Evaluate exponential functions (including base
\(e\) ).
Subsection 5.1.1 Activities
Activity 5.1.2 .
You have two job offers on the horizon. One has offered to pay you
\(\$10{,}000\) per month while the other is offering
\(\$0.01\) the first month,
\(\$0.02\) the second month,
\(\$0.04\) the third month and doubles every month. Which job would you rather take?
(a)
Make a table representing how much money you will be paid each month for the first two years from the first job - paying
\(\$10{,}000\) per month.
Answer .
\(1\)
\(10{,}000\)
\(2\)
\(10{,}000\)
\(3\)
\(10{,}000\)
\(4\)
\(10{,}000\)
\(5\)
\(10{,}000\)
\(6\)
\(10{,}000\)
\(7\)
\(10{,}000\)
\(8\)
\(10{,}000\)
\(9\)
\(10{,}000\)
\(10\)
\(10{,}000\)
\(11\)
\(10{,}000\)
\(12\)
\(10{,}000\)
\(13\)
\(10{,}000\)
\(14\)
\(10{,}000\)
\(15\)
\(10{,}000\)
\(16\)
\(10{,}000\)
\(17\)
\(10{,}000\)
\(18\)
\(10{,}000\)
\(19\)
\(10{,}000\)
\(20\)
\(10{,}000\)
\(21\)
\(10{,}000\)
\(22\)
\(10{,}000\)
\(23\)
\(10{,}000\)
\(24\)
\(10{,}000\)
(b)
Make a table representing how much money you will be paid each month for the first two years from the second job - paying
\(\$0.01\) the first month and doubling every month after.
Answer .
\(1\)
\(0.01\)
\(2\)
\(0.02\)
\(3\)
\(0.04\)
\(4\)
\(0.08\)
\(5\)
\(0.16\)
\(6\)
\(0.32\)
\(7\)
\(0.64\)
\(8\)
\(1.28\)
\(9\)
\(2.56\)
\(10\)
\(5.12\)
\(11\)
\(10.24\)
\(12\)
\(20.48\)
\(13\)
\(40.96\)
\(14\)
\(81.92\)
\(15\)
\(163.84\)
\(16\)
\(327.68\)
\(17\)
\(655.36\)
\(18\)
\(1{,}310.72\)
\(19\)
\(2{,}621.24\)
\(20\)
\(5{,}242.88\)
\(21\)
\(10{,}485.76\)
\(22\)
\(20{,}971.52\)
\(23\)
\(41{,}943.04\)
\(24\)
\(83{,}886.08\)
(c)
Which job is earning more money per month after one year?
Answer .
Job 1 is earning
\(\$10{,}000\) per month. Job 2 is earning
\(\$20.48\) per month.
(d)
Which job is earning more money per month after 18 months?
Answer .
Job 1 is earning
\(\$10{,}000\) per month. Job 2 is earning
\(\$1{,}310.72\) per month.
(e)
According to your tables, does the second job ever earn more money per month than the first job?
Answer .
Yes! After 21 months, Job 1 is earning
\(\$10{,}000\) per month. Job 2 is earning
\(\$10{,}485.76\) per month.
Definition 5.1.4 .
Let \(a\) be a non-zero real number and \(b \neq 1\) a positive real number. An exponential function takes the form
\begin{equation*}
f(x)=ab^{x}
\end{equation*}
where \(a\) is the initial value and \(b\) is the base.
Activity 5.1.5 .
Evaluate the following exponential functions.
(a)
\(f(x)=4^{x}\) for
\(f(3)\)
(b)
\(f(x)=\left( \dfrac{1}{3} \right)^{x}\) for
\(f(3)\)
(c)
\(f(x)=3\cdot \left( 5 \right)^{x}\) for
\(f(-2)\)
(d)
\(f(x)=-2^{3x-4}\) for
\(f(4)\)
Activity 5.1.7 .
Consider two exponential functions
\(f(x)=100(2)^{x}\) and
\(g(x)=100 \left( \dfrac{1}{2} \right)^{x}\text{.}\)
(a)
Fill in the table of values for
\(f(x)\text{.}\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
Answer .
\(0\)
\(100\)
\(1\)
\(200\)
\(2\)
\(400\)
\(3\)
\(800\)
\(4\)
\(1600\)
(b)
Fill in the table of values for
\(g(x)\text{.}\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
Answer .
\(0\)
\(100\)
\(1\)
\(50\)
\(2\)
\(25\)
\(3\)
\(12.5\)
\(4\)
\(6.25\)
(c)
How do the values in the tables compare?
Answer .
The values of
\(f(x)\) are getting larger while those of
\(g(x)\) are getting smaller.
Activity 5.1.10 .
For each year
\(t\text{,}\) the population of a certain type of tree in a forest is represented by the function
\(F(t)=856\cdot (0.93)^t\text{.}\)
(a)
How many of that certain type of tree are in the forest initially?
(b)
Is the number of trees of that type growing or decaying?
Answer .
Decaying
\(b=0.93 \lt 1\)
Activity 5.1.11 .
To begin creating equations for exponential functions using
\(a\) and
\(b\text{,}\) letβs compare a linear function and an exponential function. The tables show outputs for two different functions
\(r\) and
\(s\) that correspond to equally spaced input.
\(0\)
\(12\)
\(3\)
\(10\)
\(6\)
\(8\)
\(9\)
\(6\)
\(0\)
\(12\)
\(3\)
\(9\)
\(6\)
\(6.75\)
\(9\)
\(5.0625\)
(a)
Which function is linear?
Answer .
\(r(x)\) since the outputs decrease by 2 every time.
(b)
What is the initial value of the linear function?
(c)
What is the slope of the linear function?
(d)
What is the initial value of the exponential function?
(e)
What is the ratio of consecutive outputs in the exponential function?
\(\displaystyle \dfrac{4}{3}\)
\(\displaystyle \dfrac{3}{4}\)
\(\displaystyle -\dfrac{4}{3}\)
\(\displaystyle -\dfrac{3}{4}\)
Activity 5.1.13 .
Find an equation for an exponential function passing through the points
\((0,4)\) and
\((1,6)\text{.}\)
(a)
Find the initial value.
\(\displaystyle 0\)
\(\displaystyle 4\)
\(\displaystyle 1\)
\(\displaystyle 6\)
(b)
Find the common ratio.
\(\displaystyle \dfrac{3}{2}\)
\(\displaystyle 6\)
\(\displaystyle \dfrac{2}{3}\)
\(\displaystyle \dfrac{1}{6}\)
(c)
Find the equation.
\(\displaystyle f(x)=6\left( \dfrac{3}{2} \right)^x\)
\(\displaystyle f(x)=4\cdot \left( 6 \right)^x\)
\(\displaystyle f(x)=4\left( \dfrac{2}{3} \right)^x\)
\(\displaystyle f(x)=4\cdot \left( \dfrac{3}{2} \right)^x\)
Answer .
D:
\(f(x)=4\left( \dfrac{3}{2} \right)^x\)
Activity 5.1.15 .
Letβs consider the two exponential functions
\(f(x)=2^{-x}\) and
\(g(x)=\left(\dfrac{1}{2}\right)^{x}\text{.}\)
(a)
Fill in the table of values for
\(f(x)\text{.}\)
\(-2\)
\(-1\)
\(0\)
\(1\)
\(2\)
Answer .
\(-2\)
\(4\)
\(-1\)
\(2\)
\(0\)
\(1\)
\(1\)
\(\dfrac{1}{2}\)
\(2\)
\(\dfrac{1}{4}\)
(b)
Fill in the table of values for
\(g(x)\text{.}\)
\(-2\)
\(-1\)
\(0\)
\(1\)
\(2\)
Answer .
\(-2\)
\(4\)
\(-1\)
\(2\)
\(0\)
\(1\)
\(1\)
\(\dfrac{1}{2}\)
\(2\)
\(\dfrac{1}{4}\)
(c)
What do you notice about the two functions?
Answer .
Their values are the same.
(d)
Use
RemarkΒ 5.1.14 and other properties of exponents to try and rewrite
\(f(x)\) as
\(g(x)\text{.}\)
Answer .
\begin{equation*}
f(x)=2^{-x}=\dfrac{1}{2^x}=\left(\dfrac{1}{2}\right)^x=g(x)
\end{equation*}
Activity 5.1.17 .
Use a calculator to evaluate the following exponentials involving the base
\(e\text{.}\)
(a)
\(f(x)=-2e^{x}-2\) for
\(f(-2)\)
\(\displaystyle -0.0366\)
\(\displaystyle -2.2707\)
\(\displaystyle -1.7293\)
\(\displaystyle -16.778\)
(b)
\(f(x)=\dfrac{1}{3}e^{x+1}\) for \(f(-1)\)
\(\displaystyle 1\)
\(\displaystyle 0\)
\(\displaystyle 1.122\)
\(\displaystyle \dfrac{1}{3}\)
Subsection 5.1.2 Exercises