Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.2 Angle Position and Arc Length (TR2)
Objectives
Identify and find coterminal angles. Find the length of a circular arc.
Subsection 6.2.1 Activities
Activity 6.2.1 .
Consider the angle given below:
Which of the following angles describe the plotted angle?
\(\displaystyle -45^\circ\)
\(\displaystyle -135^\circ\)
\(\displaystyle -225^\circ\)
\(\displaystyle -315^\circ\)
Definition 6.2.2 .
Two angles are called
coterminal angles if they have the same terminal side when drawn in standard position.
Activity 6.2.3 .
Consider the angle given below:
(a)
Find two angles larger than
\(60^\circ\) that are coterminal to
\(60^\circ\text{.}\)
Answer .
\(420^\circ\text{,}\) \(780^\circ\text{,}\) among others.
(b)
Find two angles smaller than
\(60^\circ\) that are coterminal to
\(60^\circ\text{.}\)
Answer .
\(-300^\circ\text{,}\) \(-660^\circ\text{,}\) among others.
Definition 6.2.6 .
If
\(\theta\) is an angle, there is a unique angle
\(\alpha\) with
\(0 \leq \alpha \lt 360^\circ\) (or
\(0\leq \alpha \lt 2\pi\) ) such that
\(\alpha\) and
\(\theta\) are coterminal. This angle
\(\alpha\) is called the
principal angle of
\(\theta\text{.}\)
Activity 6.2.7 .
Find the principal angles for each of the following angles.
(a)
(b)
(c)
(d)
Activity 6.2.9 .
Consider the portion of a circle of radius
\(1\) graphed below.
(a)
What is the circumference of an entire circle of radius
\(1\text{?}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
\(\displaystyle \frac{1}{2}\)
\(\displaystyle \frac{3}{4}\)
(c)
Use proportions to determine the length of the arc displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
Activity 6.2.10 .
Consider the portion of a circle of radius
\(3\) graphed below.
(a)
What is the circumference of an entire circle of radius
\(3\text{?}\)
\(\displaystyle \pi\)
\(\displaystyle 3\pi\)
\(\displaystyle 6\pi\)
\(\displaystyle 9\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{12}\)
\(\displaystyle \frac{1}{6}\)
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
(c)
Use proportions to determine the length of the arc displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle 2\pi\)
\(\displaystyle 3\pi\)
Activity 6.2.12 .
Find the lengths of the arcs described below.
(a)
The length of the arc of a sector of measure
\(120^\circ\) of a circle of radius
\(4\text{.}\)
(b)
The length of the arc of a sector of measure
\(270^\circ\) of a circle of radius
\(2\text{.}\)
(c)
The length of the arc of a sector of measure
\(\dfrac{5\pi}{6}\) of a circle of radius
\(3\text{.}\)
(d)
The length of the arc of a sector of measure
\(\dfrac{11\pi}{12}\) of a circle of radius
\(6\text{.}\)
Activity 6.2.14 .
Consider the portion of a circle of radius
\(1\) graphed below.
(a)
What is the area of an entire circle of radius
\(1\text{?}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
\(\displaystyle \frac{1}{2}\)
\(\displaystyle \frac{3}{4}\)
(c)
Use proportions to determine the area of the arc displayed above.
\(\displaystyle \frac{\pi}{4}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
Activity 6.2.15 .
Consider the portion of a circle of radius
\(3\) graphed below.
(a)
What is the area of an entire circle of radius
\(3\text{?}\)
\(\displaystyle \pi\)
\(\displaystyle 3\pi\)
\(\displaystyle 6\pi\)
\(\displaystyle 9\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{12}\)
\(\displaystyle \frac{1}{6}\)
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
(c)
Use proportions to determine the area of the sector displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
Activity 6.2.17 .
Find the areas of each sector described below.
(a)
The sector with central angle
\(120^\circ\) in a circle of radius
\(4\text{.}\)
(b)
The sector with central angle
\(270^\circ\) in a circle of radius
\(2\text{.}\)
(c)
The sector with central angle
\(\dfrac{5\pi}{6}\) in a circle of radius
\(3\text{.}\)
(d)
The sector with central angle
\(\dfrac{11\pi}{12}\) in a circle of radius
\(6\text{.}\)
Subsection 6.2.2 Exercises