Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.2 Function Notation (FN2)
Objectives
Use and interpret function notation to evaluate a function for a given input value and find a corresponding input value given an output value.
Subsection 2.2.1 Activities
Activity 2.2.2 .
Rewrite the following equations using function notation. In each case, assume
\(y\) is a function of the variable
\(x\text{.}\)
(a)
(b)
(c)
\(\displaystyle \dfrac{2}{x}-x^4 = y-5 \)
Answer .
\(f(x)=\displaystyle \dfrac{2}{x}-x^4 +5 \)
Activity 2.2.3 .
Let
\(f(x)=3x^2-4x+1\text{.}\) Find the value of
\(f(x)\) for the given values of
\(x\text{.}\)
Table 2.2.4.
\(-5\)
\(-\dfrac{1}{2}\)
\(0\)
\(2\)
\(10\)
Answer .
\(-5\)
\(96\)
\(-\dfrac{1}{2}\)
\(\dfrac{15}{4}\)
\(0\)
\(1\)
\(2\)
\(5\)
\(10\)
\(261\)
Activity 2.2.6 .
A projectile is fired into the air from an initial height of 144 feet. The height \(h(t)\) after \(t\) seconds is defined by the function
\begin{equation*}
h(t)=-16t^{2} + 128t + 144\text{.}
\end{equation*}
(a)
Find \(h(4)\text{.}\)
\(\displaystyle 400\)
\(\displaystyle 912\)
\(\displaystyle -64 \, t^{2} + 512 \, t + 576\)
\(\displaystyle -64t^{2} + 128t + 144\)
(b)
Describe what youβve just found using the context of the situation.
After \(400\) seconds, the height of the projectile is \(4\) feet.
After \(4\) seconds, the height of the projectile is \(400\) feet.
After \(4\) feet, the height of the projectile is \(400\) seconds.
After \(400\) feet, the height of the projectile is \(4\) seconds.
Activity 2.2.7 .
Let \(f(x)\text{,}\) \(g(x)\text{,}\) and \(h(x)\) be defined as shown.
\begin{align*}
f(x)&=3x^2-4x+1\\
g(x)&=\sqrt{13-x^2}\\
h(x)&=\dfrac{x^2-6x+8}{x^2-4x+3}
\end{align*}
Find the following, if they exist.
(a)
\(f(-4)\text{,}\) \(f(0)\text{,}\) and
\(f(2)\)
Answer .
\(f(-4)=65\text{,}\) \(f(0)=1\text{,}\) and
\(f(2)=5\)
(b)
\(g(0)\text{,}\) \(g(2)\text{,}\) and
\(g(8)\)
Answer .
\(g(0)=\sqrt{13}\text{,}\) \(g(2)=3\text{,}\) and
\(g(8)\) is not defined
(c)
\(h(3)\text{,}\) \(h(4)\text{,}\) and
\(h(10)\)
Answer .
\(h(3)\) is not defined,
\(h(4)=0\text{,}\) and
\(h(10)=\dfrac{16}{21}\)
Activity 2.2.9 .
Let \(f(x)\) be a piecewise function as shown below.
\begin{equation*}
f(x)=\begin{cases}
x^2+3, & x < 5 \\
9-2x, & x \geq 5
\end{cases}
\end{equation*}
(a)
On which interval from the piecewise function does the value \(x=1\) belong?
\(\displaystyle x < 5\)
\(\displaystyle x \leq 5\)
\(\displaystyle x > 5\)
\(\displaystyle x \geq 5\)
(b)
Find \(f(1)\text{.}\)
\(\displaystyle 3\)
\(\displaystyle 4\)
\(\displaystyle 5\)
\(\displaystyle 6\)
\(\displaystyle 7\)
(c)
On which interval from the piecewise function does the value \(x=5\) belong?
\(\displaystyle x < 5\)
\(\displaystyle x \leq 5\)
\(\displaystyle x > 5\)
\(\displaystyle x \geq 5\)
(d)
Find \(f(5)\text{.}\)
\(\displaystyle -10\)
\(\displaystyle -5\)
\(\displaystyle -1\)
\(\displaystyle 17\)
\(\displaystyle 28\)
Activity 2.2.11 .
Let
\(g(x)=x^2-3x\text{.}\)
(a)
Find \(g(a)\text{.}\)
\(\displaystyle (ax)^2-3ax\)
\(\displaystyle a^2-3a\)
\(\displaystyle a(x^2-3x)\)
\(\displaystyle ax^2-3ax\)
\(\displaystyle a-3\)
(b)
Find \(g(x+h)\text{.}\)
\(\displaystyle x^2-3x+h\)
\(\displaystyle (x+h)^2-3x\)
\(\displaystyle (x+h)^2-3(x+h)\)
\(\displaystyle x^2-3(x+h)\)
Activity 2.2.13 .
Let
\(f(x)\) be the function graphed below.
(a)
Find \(f(1)\text{.}\)
\(\displaystyle -4\)
\(\displaystyle -2\)
\(\displaystyle 0\)
\(\displaystyle 2\)
\(\displaystyle 4\)
(b)
Find \(f(3)\text{.}\)
\(\displaystyle -1\)
\(\displaystyle 0\)
\(\displaystyle 1\)
\(\displaystyle 2\)
\(\displaystyle 3\)
\(\displaystyle 4\)
(c)
For which \(x\) -value(s) does \(f(x)=1\text{?}\)
\(\displaystyle -1\)
\(\displaystyle 0\)
\(\displaystyle 1\)
\(\displaystyle 2\)
\(\displaystyle 3\)
\(\displaystyle 4\)
(d)
For which
\(x\) -value(s) does
\(f(x)=4\text{.}\) Estimate as needed!
Answer .
approximately
\(-0.5, 1,\) and
\(4.5\)
Activity 2.2.14 .
In these activities, we are flipping the question around. This time we know what the function equals at some
\(x\) -value, and we want to recover that
\(x\) -value (or values!).
(a)
Let
\(h(x)=5x+7\text{.}\) Find the
\(x\) -value(s) such that
\(h(x)=-13\text{.}\)
(b)
Let
\(f(x)=x^2-3x-9\text{.}\) Find the
\(x\) -value(s) such that
\(f(x)=9\text{.}\)
Activity 2.2.15 .
Ellie has \(\$13\) in her piggy bank, and she gets an additional \(\$1.50\) each week for her allowance. Assuming she does not spend any money, the total amount of allowance, \(A(w)\text{,}\) she has after \(w\) weeks can be modeled by the function
\begin{equation*}
A(w)=13+1.50w\text{.}
\end{equation*}
(a)
How much money will be in her piggy bank after
\(5\) weeks?
(b)
After how many weeks will she have $
\(40\) in her piggy bank?
Subsection 2.2.2 Exercises