Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.3 Inverse Trig Functions (PF3)
Objectives
Determine the inverse sine, cosine, and tangent values; graph inverse trig functions and determine the limitations on the domain and range.
Subsection 7.3.1 Activities
Activity 7.3.1 .
Which of the following angles satisfy
\(\cos(\theta)=\frac{1}{2}\text{?}\)
\(\displaystyle \dfrac{\pi}{6}\)
\(\displaystyle \dfrac{\pi}{3}\)
\(\displaystyle \dfrac{2\pi}{3}\)
\(\displaystyle \dfrac{5\pi}{6}\)
\(\displaystyle \dfrac{7\pi}{6}\)
\(\displaystyle \dfrac{4\pi}{3}\)
\(\displaystyle \dfrac{5\pi}{3}\)
\(\displaystyle \dfrac{11\pi}{6}\)
Activity 7.3.2 .
A carpenter is cutting a hand rail for a ramp on his mitre saw. The ramp goes up 4 feet, and the length of the hand rail is 48 feet long. Which of the following equations determines the angle of the ramp, which the carpenter will use to set his saw?
\(\displaystyle \sin(\theta)=\frac{1}{12}\)
\(\displaystyle \cos(\theta)=\frac{1}{12}\)
\(\displaystyle \tan(\theta)=\frac{1}{12}\)
\(\displaystyle \cot(\theta)=\frac{1}{12}\)
Activity 7.3.5 .
By restricting the domain, we can find a part of the sine function which is
one-to-one , and thus allows us to define an inverse function.
Which of the following domain restrictions is one-to-one?
\(-\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.6 .
The
arcsine function, denoted
\(\arcsin(x)\text{,}\) is the inverse of the restriction of
\(\sin(x)\) to the domain
\([-\dfrac{\pi}{2},\dfrac{\pi}{2}]\text{.}\)
In other words,
\(\arcsin(x)\) is the unique angle
\(\theta\) with
\(-\dfrac{\pi}{2} \leq \theta \leq \dfrac{\pi}{2}\) such that
\(\sin(\theta)=x\text{.}\)
Since the inverse of a function
\(f(x)\) is usually denoted
\(f^{-1}(x)\text{,}\) some authors and calculators like to use the (more compact) notation
\(\sin^{-1}(x)\) instead of
\(\arcsin(x)\text{.}\) This should not be confused with
\(\left(\sin(x)\right)^{-1}\text{,}\) i.e.
\(\csc(x)\text{.}\)
Activity 7.3.7 .
Compute each of the following, without the use of technology.
(a)
\(\arcsin\left(\dfrac{1}{2}\right)\)
(b)
\(\arcsin\left(-1\right)\)
(c)
\(\arcsin\left(\dfrac{\sqrt{2}}{2}\right)\)
(d)
\(\arcsin\left(-\dfrac{\sqrt{3}}{2}\right)\)
Activity 7.3.8 .
Which of the following domain restrictions of
\(\cos(x)\) is one-to-one?
\(-\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.9 .
The
arccosine function, denoted
\(\arccos(x)\text{,}\) is the inverse of the restriction of
\(\cos(x)\) to the domain
\([0,\pi]\text{.}\)
In other words,
\(\arccos(x)\) is the unique angle
\(\theta\) with
\(0 \leq \theta \leq \pi\) such that
\(\cos(\theta)=x\text{.}\)
Activity 7.3.10 .
Compute each of the following, without the use of technology.
(a)
\(\arccos\left(\dfrac{1}{2}\right)\)
(b)
\(\arccos\left(-1\right)\)
(c)
\(\arccos\left(\dfrac{\sqrt{2}}{2}\right)\)
(d)
\(\arccos\left(-\dfrac{\sqrt{3}}{2}\right)\)
Activity 7.3.11 .
Which of the following domain restrictions of
\(\tan(x)\) is one-to-one?
\(-\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.12 .
The
arctangent function, denoted
\(\arctan(x)\text{,}\) is the inverse of the restriction of
\(\tan(x)\) to the domain
\(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\text{.}\)
In other words,
\(\arctan(x)\) is the unique angle
\(\theta\) with
\(-\dfrac{\pi}{2} \lt \theta \lt \dfrac{\pi}{2}\) such that
\(\tan(\theta)=x\text{.}\)
Activity 7.3.14 .
Compute each of the following, without the use of technology.
(a)
\(\arctan\left(1\right)\)
(b)
\(\arctan\left(-\sqrt{3}\right)\)
(c)
\(\arctan\left(0\right)\)
(d)
\(\arctan\left(\dfrac{\sqrt{3}}{3}\right)\)
Activity 7.3.15 .
Sometimes, as in
ActivityΒ 7.3.2 , we need to find an inverse trigonometric function that does not produce one of our special angles.
Compute each of the following using technology (e.g. a calculator).
(a)
\(\arcsin\left(\frac{1}{12}\right)\)
Answer .
\(4.78^\circ\) or
\(0.083\) radians
(b)
\(\arccos\left(-\dfrac{3}{5}\right)\)
Answer .
\(126.9^\circ\) or
\(2.21\) radians
(c)
\(\arctan\left(2\right)\)
Answer .
\(63.43^\circ\) or
\(1.11\) radians
Activity 7.3.17 .
Consider the function
\(f(x)=\arcsin(x)\text{.}\)
(a)
Complete the table of values.
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint .
Recall that
\(\theta=\arcsin(x)\) means
\(\sin(\theta)=x\text{.}\)
Answer .
\(-1\)
\(-\dfrac{\pi}{2}\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\pi}{3}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{\pi}{4}\)
\(-\dfrac{1}{2}\)
\(-\dfrac{\pi}{6}\)
\(0\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\pi}{6}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{\pi}{3}\)
\(1\)
\(\dfrac{\pi}{2}\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arcsin(x)\text{.}\) Then sketch the graph of the arcsine curve using the points as a guide.
(c)
What is the domain of
\(f(x)=\arcsin(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arcsin(x)\text{?}\)
Answer .
\([-\dfrac{\pi}{2},\dfrac{\pi}{2}]\)
Activity 7.3.18 .
Consider the function
\(f(x)=\arccos(x)\text{.}\)
(a)
Complete the table of values.
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint .
Recall that
\(\theta=\arccos(x)\) means
\(\cos(\theta)=x\text{.}\)
Answer .
\(-1\)
\(\pi\)
\(-\dfrac{\sqrt{3}}{2}\)
\(\dfrac{5\pi}{6}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(\dfrac{3\pi}{4}\)
\(-\dfrac{1}{2}\)
\(\dfrac{2\pi}{3}\)
\(0\)
\(\dfrac{\pi}{2}\)
\(\dfrac{1}{2}\)
\(\dfrac{\pi}{3}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{\pi}{6}\)
\(1\)
\(0\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arccos(x)\text{.}\) Then sketch the graph of the arccosine curve using the points as a guide.
(c)
What is the domain of
\(f(x)=\arccos(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arccos(x)\text{?}\)
Activity 7.3.19 .
Consider the function
\(f(x)=\arctan(x)\text{.}\)
(a)
Complete the table of values.
\(-\sqrt{3}\)
\(-1\)
\(-\dfrac{\sqrt{3}}{3}\)
\(0\)
\(\dfrac{\sqrt{3}}{3}\)
\(1\)
\(\sqrt{3}\)
Hint .
Recall that
\(\theta=\arctan(x)\) means
\(\tan(\theta)=x\text{.}\)
Answer .
\(-\sqrt{3}\)
\(-\dfrac{\pi}{3}\)
\(-1\)
\(-\dfrac{\pi}{4}\)
\(-\dfrac{\sqrt{3}}{3}\)
\(-\dfrac{\pi}{6}\)
\(0\)
\(0\)
\(\dfrac{\sqrt{3}}{3}\)
\(\dfrac{\pi}{6}\)
\(1\)
\(\dfrac{\pi}{4}\)
\(\sqrt{3}\)
\(\dfrac{\pi}{3}\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arctan(x)\text{.}\) Then sketch the graph of the arctangent curve using the points as a guide.
(c)
What is the domain of
\(f(x)=\arctan(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arctan(x)\text{?}\)
Answer .
\(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\)
Activity 7.3.20 .
Sometimes when solving applied problems, we need to exactly (not approximately) evaluate expressions like
\(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{.}\)
(a)
Which of the following sentences describe the expression
\(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{?}\)
The angle whose cosine is the same as the sine of
\(\frac{5}{13}\text{.}\)
The angle whose sine is the same as the cosine of
\(\frac{5}{13}\text{.}\)
The cosine of the angle whose sine is
\(\frac{5}{13}\text{.}\)
The sine of the angle whose cosine is
\(\frac{5}{13}\text{.}\)
(b)
Let
\(\theta = \arccos(\frac{5}{13})\text{.}\) Draw a right triangle with an angle of
\(\theta\text{,}\) and find the lengths of its three sides.
(c)
Find
\(\sin(\theta)\text{.}\) Since we defined
\(\theta = \arccos(\frac{5}{13})\text{,}\) this gives us
\(\sin(\arccos(\frac{5}{13}))\text{.}\)
\(\displaystyle \dfrac{5}{13}\)
\(\displaystyle \dfrac{12}{13}\)
\(\displaystyle \dfrac{5}{12}\)
\(\displaystyle \dfrac{13}{12}\)
Activity 7.3.21 .
Compute each of the following.
(a)
\(\tan(\arcsin(\frac{8}{17}))\)
(b)
\(\sec(\arctan(\frac{24}{7}))\)
(c)
\(\tan(\arcsin(\frac{3}{4}))\)
(d)
Hint .
Draw an appropriate right triangle with two sides as
\(x\) and
\(1\text{.}\)
Answer .
Subsection 7.3.2 Exercises