Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.4 Absolute Value Equations and Inequalities (EQ4)
Objectives
Solve linear equations involving an absolute value. Solve linear inequalities involving absolute values and express the answers graphically and using interval notation.
Subsection 1.4.1 Activities
Activity 1.4.2 .
Letβs consider how to solve an equation when an absolute value is involved.
(a)
Which values are solutions to the absolute value equation \(\lvert x \rvert = 2\text{?}\)
(b)
Which values are solutions to the absolute value equation \(\lvert x-7 \rvert = 2\text{?}\)
(c)
Which values are solutions to the absolute value equation \(3\lvert x-7 \rvert +5= 11\text{?}\) It may be helpful to rewrite the equation to isolate the absolute value.
Activity 1.4.3 .
Absolute value represents the distance a value is from 0 on the number line. So,
\(\lvert x-7 \rvert = 2\) means that the expression
\(x-7\) is
\(2\) units away from
\(0\text{.}\)
(a)
What values on the number line could \(x-7 \) equal?
(b)
This gives us two separate equations to solve. What are those two equations?
(c)
Solve each equation for
\(x\text{.}\)
Activity 1.4.5 .
Solve the following absolute value equations.
(a)
\(\lvert 3x+4 \rvert = 10\)
\(\displaystyle \{-2, 2\}\)
\(\displaystyle \left\{-\dfrac{14}{3}, 2\right\}\)
\(\displaystyle \{-10, 10\}\)
(b)
\(3\lvert x-7 \rvert+5 = 11\)
\(\displaystyle \{-2, 2\}\)
\(\displaystyle \{-9, 9\}\)
\(\displaystyle \{5, 9\}\)
(c)
\(2\lvert x+1 \rvert+8 = 4\)
\(\displaystyle \{-4, 4\}\)
\(\displaystyle \{-6, 6\}\)
\(\displaystyle \{5, 7\}\)
Activity 1.4.7 .
Just as with linear equations and inequalities, we can consider absolute value inequalities from equations.
(a)
Which values are solutions to the absolute value inequality \(\lvert x-7 \rvert \le 2\text{?}\)
(b)
Rewrite the absolute value inequality \(\lvert x-7 \rvert \le 2\) as a compound inequality.
\(\displaystyle 0 \le x-7 \le 2\)
\(\displaystyle -2 \le x-7 \le 2\)
\(\displaystyle -2 \le x-7 \le 0\)
\(\displaystyle 2 \le x \le 7\)
(c)
Solve the compound inequality that is equivalent to \(\lvert x-7 \rvert \le 2\) found in part (b). Write the solution in interval notation.
(d)
Draw the solution to \(\lvert x-7 \rvert \le 2\) on the number line.
Activity 1.4.8 .
Now letβs consider another type of absolute value inequality.
(a)
Which values are solutions to the absolute value inequality \(\lvert x-7 \rvert \ge 2\text{?}\)
(b)
Which two of the following inequalities are equivalent to \(\lvert x-7 \rvert \ge 2\text{.}\)
\(\displaystyle x-7 \le 2 \)
\(\displaystyle x-7 \le -2\)
\(\displaystyle x-7 \ge 2\)
\(\displaystyle x-7 \ge -2\)
(c)
Solve the two inequalities found in part (b). Write the solution in interval notation and graph on the number line.
\(\displaystyle (-\infty,7] \cup [9,\infty)\)
\(\displaystyle (-\infty,5] \cup [9,\infty)\)
\(\displaystyle (-\infty,5] \cup [7,\infty)\)
\(\displaystyle (-\infty,2] \cup [7,\infty)\)
Definition 1.4.9 .
When solving an absolute value inequality, rewrite it as compound inequalities. Assume
\(k\) is positive.
\(\lvert x \rvert \lt k \text{ becomes } -k \lt x \lt k\text{.}\) \(\lvert x \rvert \gt k \text{ becomes } x\gt k \text{ or } x\lt-k\text{.}\)
Activity 1.4.10 .
Solve the following absolute value inequalities. Write your solution in interval notation and graph on a number line.
(a)
\(\lvert 3x+4 \rvert \lt 10\)
Answer .
\(-\dfrac{14}{3} \lt x \lt 2\text{,}\) \(\left( -\dfrac{14}{3}, 2 \right)\)
(b)
\(3\lvert x-7 \rvert+5 \gt 11\)
Answer .
\(x \lt 5\) and
\(x \gt 9\text{,}\) \((-\infty, 5) \cup (9, \infty)\)
Subsection 1.4.2 Exercises