In many different settings, we are interested in knowing where a function achieves its least and greatest values. These can be important in applicationsβsay to identify a point at which maximum profit or minimum cost occursβor in theory to characterize the behavior of a function or a family of related functions.
Consider the familiar example of a parabolic function such as \(s(t) = -16t^2 + 32t + 48\text{.}\) This function represents the height of an object tossed vertically straight up: its maximum value occurs at the vertex of the parabola and represents the greatest height the object reaches. This maximum value is an especially important point on the graph and we can notice that the function changes from increasing to decreasing at this point.
We say that \(f(x)\) has a global maximum at \(x=c\) provided that \(f(c)\geq f(x)\) for all \(x\) in the domain of the function. We also say that \(f(c)\) is a global maximum value for the function. On the other hand, we say that \(f(x)\) has a global minimum at \(x=c\) provided that \(f(c)\leq f(x)\) for all \(x\) in the domain of the function. We also say that \(f(c)\) is a global minimum value for the function. The global maxima and minima are also known as the global extrema (or extreme values or absolute extrema) of the function.
There can be some issues when trying to determine the global minimum and maximum values of a function only using its graph. The Extreme Value Theorem will guarantee the existence of global extrema on a closed interval. Then we will see how to use derivatives to find algebraically the extrema of a function.
We say that \(x=c\) is a critical point (or critical number) of \(f(x)\) if \(x=c\) is in the domain of \(f(x)\) and either \(f'(c) = 0\) or \(f'(c)\) does not exist.
Explain how to find the global minimum and global maximum values of the function \(f(x)=-2 \, x^{3} + 18 \, x^{2} + 42 \, x + 33\) on the interval \([-2,2]\text{.}\)