Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.5 Basic Convergence Tests (SQ5)
Learning Outcomes
Use the divergence, alternating series, and integral tests to determine if a series converges or diverges.
Subsection 8.5.1 Activities
Activity 8.5.1 .
Which of the following series seem(s) to diverge? It might be helpful to write out the first several terms.
\(\displaystyle \sum_{n=0}^\infty n^2\text{.}\)
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{n+1}{n}\text{.}\)
\(\displaystyle \sum_{n=0}^\infty (-1)^n\text{.}\)
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n}\text{.}\)
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}\text{.}\)
Fact 8.5.2 .
If the series
\(\displaystyle\sum a_n\) is convergent, then
\(\displaystyle\lim_{n\rightarrow\infty} a_n=0\text{.}\)
Fact 8.5.3 . The Divergence (\(n^{th}\) term) Test.
If the
\(\displaystyle\lim_{n\rightarrow\infty} a_n\neq 0\text{,}\) then
\(\displaystyle\sum a_n\) diverges.
Activity 8.5.4 .
Fact 8.5.5 .
If
\(a_n>0\) for all
\(n\text{,}\) then
\(\displaystyle\sum a_n\) is convergent if and only if the sequence of partial sums is bounded from above.
Activity 8.5.6 .
Consider the so-called
harmonic series ,
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{1}{n}\text{,}\) and let
\(S_n\) be its
\(n^{th}\) partial sum.
(a)
Determine which of the following inequalities hold(s).
\(\displaystyle\frac{1}{3}+\frac{1}{4}\lt \frac{1}{2}\text{.}\)
\(\displaystyle\frac{1}{3}+\frac{1}{4}\gt \frac{1}{2}\text{.}\)
\(S_4\geq S_2+\displaystyle\frac{1}{2}\text{.}\)
\(S_4\leq S_2+\displaystyle\frac{1}{2}\text{.}\)
\(S_4= S_2+\displaystyle\frac{1}{2}\text{.}\)
(b)
Determine which of the following inequalities hold(s).
\(\displaystyle\frac{1}{2}\lt \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\text{.}\)
\(\displaystyle\frac{1}{2}\gt \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\text{.}\)
\(S_8=S_4+\displaystyle\frac{1}{2}\text{.}\)
\(S_8\geq S_4+\displaystyle\frac{1}{2}\text{.}\)
\(S_8\leq S_4+\displaystyle\frac{1}{2}\text{.}\)
Activity 8.5.7 .
In
ActivityΒ 8.5.6 , we found that
\(S_4\geq S_2+\displaystyle\frac{1}{2}\) and
\(S_8\geq S_4+\displaystyle\frac{1}{2}\text{.}\) Based on these inequalities, which statement seems most likely to hold?
The harmonic series converges.
The harmonic series diverges.
Activity 8.5.8 .
Consider the series
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{1}{n^2}\text{.}\)
(a)
We want to compare this series to an improper integral. Which of the following is the best candidate?
\(\displaystyle\int_1^\infty x^2 \, dx\text{.}\)
\(\displaystyle\int_1^\infty \displaystyle\frac{1}{x^3} \, dx\text{.}\)
\(\displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{.}\)
\(\displaystyle\int_1^\infty \displaystyle\frac{1}{x} \, dx\text{.}\)
\(\displaystyle\int_1^\infty x \, dx\text{.}\)
(b)
Select the true statements below.
The sum \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}\) corresponds to approximating the integral chosen above using left Riemann sums where \(\Delta x=1\text{.}\)
The sum \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}\) corresponds to approximating the integral chosen above using right Riemann sums where \(\Delta x=1\text{.}\)
The sum \(\displaystyle \sum_{n=2}^\infty \frac{1}{n^2}\) corresponds to approximating the integral chosen above using left Riemann sums where \(\Delta x=1\text{.}\)
The sum \(\displaystyle \sum_{n=2}^\infty \frac{1}{n^2}\) corresponds to approximating the integral chosen above using right Riemann sums where \(\Delta x=1\text{.}\)
(c)
Using the Riemann sum interpretation of the series, identify which of the following inequalities holds.
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2} \leq \displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{.}\)
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2} \geq \displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{.}\)
\(\displaystyle \sum_{n=2}^\infty \frac{1}{n^2} \geq \displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{.}\)
\(\displaystyle \sum_{n=2}^\infty \frac{1}{n^2} \leq \displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{.}\)
(d)
What can we say about the improper integral \(\displaystyle\int_1^\infty \displaystyle\frac{1}{x^2} \, dx\text{?}\)
This improper integral converges.
This improper integral diverges.
(e)
What do you think is true about the series \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}\text{?}\)
The series converges.
The series diverges.
Fact 8.5.9 . The Integral Test.
Let
\(\{a_n\}\) be a sequence of positive numbers. If
\(f(x)\) is continuous, positive, and decreasing, and there is some positive integer
\(N\) such that
\(f(n)=a_n\) for all
\(n\geq N\text{,}\) then
\(\displaystyle \sum_{n=N}^\infty a_n\) and
\(\displaystyle\int_N^\infty \displaystyle f(x) \, dx\) both converge or both diverge.
Activity 8.5.10 .
Consider the
\(p\) -series
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^p}\text{.}\)
(a)
Recall that the harmonic series diverges. What value of
\(p\) corresponds to the harmonic series?
\(p=-1\text{.}\)
\(p=1\text{.}\)
\(p=-2\text{.}\)
\(p=2\text{.}\)
\(p=0\text{.}\)
(b)
From
FactΒ 8.5.9 , what can we conclude about the
\(p\) -series with
\(p=2\text{?}\)
There is not enough information to draw a conclusion.
This series converges.
This series diverges.
Fact 8.5.11 . The \(p\) -Test.
The series
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{1}{n^p}\) converges for
\(p\gt 1\text{,}\) and diverges otherwise.
Activity 8.5.12 .
Consider the series
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{1}{n^2+1}\text{.}\)
(a)
If we aim to use the integral test, what is an appropriate choice for
\(f(x)\text{?}\)
\(\displaystyle \frac{1}{x^2}\text{.}\)
\(x^2+1\text{.}\)
\(\displaystyle \frac{1}{x^2+1}\text{.}\)
\(x^2\text{.}\)
\(\displaystyle \frac{1}{x}\text{.}\)
(b)
Activity 8.5.13 .
Activity 8.5.14 .
Which of the following statements seem(s) most likely to be true?
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n}\) diverges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n}\) converges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n^2}\) converges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n^2}\) diverges.
Fact 8.5.15 . The Alternating Series Test (Leibnizβs Theorem).
The series \(\displaystyle\sum (-1)^{n+1}u_n\) converges if all of the following conditions are satisfied:
\(u_n\) is always positive,
there is an integer \(N\) such that \(u_n\geq u_{n+1}\) for all \(n\geq N\text{,}\) and
\(\displaystyle\lim_{n\rightarrow\infty}u_n=0\text{.}\)
Activity 8.5.16 .
What conclusions can you now make?
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n}\) diverges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n}\) converges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n^2}\) converges.
\(\displaystyle \sum_{n=1}^\infty (-1)^n \frac{1}{n^2}\) diverges.
Activity 8.5.17 .
For each of the following series, use the
Divergence ,
Alternating Summation or
Integral test to determine if the series converges.
(a)
\(\displaystyle \sum_{n=1}^\infty \frac{2 \, {\left(n^{2} + 2\right)}}{n^{2}}.\) (b)
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^{4}}.\) (c)
\(\displaystyle \sum_{n=1}^\infty \frac{3 \, \left(-1\right)^{n}}{4 \, n}.\)
Fact 8.5.18 . The Alternating Series Estimation Theorem.
If the alternating series \(\displaystyle\sum a_n=\displaystyle\sum (-1)^{n+1}u_n\) converges to \(L\) and has \(n^{th}\) partial sum \(S_n\text{,}\) then for \(n\geq N\) (as in the alternating series test):
\(|L-S_n|\) is less than \(|a_{n+1}|\text{,}\) and
\((L-S_n)\) has the same sign as \(a_{n+1}\text{.}\)
Activity 8.5.19 .
Consider the so-called
alternating harmonic series ,
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{(-1)^{n+1}}{n}\text{.}\)
(a)
Use the alternating series test to determine if the series converges.
(b)
If so, estimate the series using the first 3 terms.
Subsection 8.5.2 Videos
Figure 180. Video: Use the divergence, alternating series, and integral tests to determine if a series converges or diverges
Subsection 8.5.3 Exercises