Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.3 Elementary Antiderivatives (IN3)
Learning Outcomes
Determine basic antiderivatives.
Subsection 4.3.1 Activities
Definition 4.3.1 .
If
\(g\) and
\(G\) are functions such that
\(G' = g\text{,}\) we say that
\(G\) is an
antiderivative of
\(g\text{.}\)
The collection of all antiderivatives of \(g\) is called the general antiderivative or indefinite integral , denoted by \(\int g(x)\,dx\text{.}\) All antiderivatives differ by a constant \(C\) (since \(\frac{d}{dx}[C]=0\) ), so we may write:
\begin{equation*}
\int g(x)\,dx=G(x)+C\text{.}
\end{equation*}
Activity 4.3.2 .
Consider the function
\(f(x)=\cos x\text{.}\) Which of the following could be
\(F(x)\text{,}\) an antiderivative of
\(f(x)\text{?}\)
Activity 4.3.3 .
Consider the function
\(f(x)=x^2\text{.}\) Which of the following could be
\(F(x)\text{,}\) an antiderivative of
\(f(x)\text{?}\)
\(\displaystyle \frac{1}{3}x^3 \)
\(\displaystyle \frac{2}{3}x^3 \)
Activity 4.3.5 .
Use your knowledge of derivatives of basic functions to complete
TableΒ 85 of antiderivatives. For each entry, your task is to find a function
\(F\) whose derivative is the given function
\(f\text{.}\)
Table 85. Familiar basic functions and their antiderivatives.
given function, \(f(x)\)
antiderivative, \(F(x)\) Β
\(k\text{,}\) (\(k\) is constant)
\(x^n\text{,}\) \(n \ne -1\)
\(\frac{1}{x}\text{,}\) \(x \gt 0\)
\(\sin(x)\)
\(\cos(x)\)
\(\sec(x) \tan(x)\)
\(\csc(x) \cot(x)\)
\(\sec^2 (x)\)
\(\csc^2 (x)\)
\(e^x\)
\(a^x\) \((a \gt 1)\)
\(\frac{1}{1+x^2}\)
\(\frac{1}{\sqrt{1-x^2}}\)
Activity 4.3.6 .
Using this information, which of the following is an antiderivative for
\(f(x) = 5\sin(x) - 4x^2\text{?}\)
\(F(x) = -5\cos(x) +\frac{4}{3}x^3\text{.}\)
\(F(x) = 5\cos(x) + \frac{4}{3}x^3\text{.}\)
\(F(x) = -5\cos(x) - \frac{4}{3}x^3\text{.}\)
\(F(x) = 5\cos(x) - \frac{4}{3}x^3\text{.}\)
Activity 4.3.7 .
Find the general antiderivative for each function.
(a)
\begin{equation*}
f(x) = -4 \, \sec^2\left(x\right)
\end{equation*}
(b)
\begin{equation*}
f(x) = \frac{8}{\sqrt{x}}
\end{equation*}
Activity 4.3.8 .
Find each indefinite integral.
(a)
\begin{equation*}
\int (-9 \, x^{4} - 7 \, x^{2} + 4) \, dx
\end{equation*}
(b)
\begin{equation*}
\int 3 \, e^{x}\, dx
\end{equation*}
Subsection 4.3.2 Videos
Figure 86. Video for IN3
Subsection 4.3.3 Exercises