Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.6 Comparison Tests (SQ6)
Learning Outcomes
Use the direct comparison and limit comparison tests to determine if a series converges or diverges.
Subsection 8.6.1 Activities
Activity 8.6.1 .
Let
\(\{a_n\}_{n=1}^\infty\) be a sequence, with infinite series
\(\displaystyle \sum_{n=1}^\infty a_n=a_1+a_2+\cdots \text{.}\) Suppose
\(\{b_n\}_{n=1}^\infty\) is a sequence where each
\(b_n=3a_n\text{,}\) with infinite series
\(\displaystyle \sum_{n=1}^\infty b_n=\sum_{n=1}^\infty 3a_n=3a_1+3a_2+\cdots \text{.}\)
(a)
If \(\displaystyle \sum_{n=1}^\infty a_n=5\) what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) converges to \(3\cdot 5=15\text{.}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges to some value other than 15.
\(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.
(b)
If \(\displaystyle \sum_{n=1}^\infty a_n\) diverges, what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) converges and the value can be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.
Activity 8.6.3 .
\begin{equation*}
\displaystyle \sum_{n=0}^\infty \frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}+\cdots=\frac{1}{1-\frac{1}{2}}=2.
\end{equation*}
(a)
What can we say about the series
\begin{equation*}
\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots?
\end{equation*}
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to some value other than 6.
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*}
\displaystyle \frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots?
\end{equation*}
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to some value other than 6.
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) diverges.
Activity 8.6.4 .
\begin{equation*}
\displaystyle 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
\end{equation*}
diverges.
(a)
What can we say about the series
\begin{equation*}
\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots?
\end{equation*}
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to a known value we can compute.
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to some unknown value.
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*}
\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots?
\end{equation*}
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to a known value we can compute.
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to some unknown value.
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) diverges.
Fact 8.6.5 . The Limit Comparison Test.
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If
\begin{equation*}
\lim_{n \to \infty} \frac{b_n}{a_n} = c
\end{equation*}
for some positive (finite) constant \(c\text{,}\) then \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) either both converge or both diverge.
Activity 8.6.6 .
Recall that
\begin{equation*}
\displaystyle \sum_{n=1}^\infty \frac{1}{2^n}
\end{equation*}
converges.
(a)
Let
\(b_n=\frac{1}{n}\text{.}\) Compute
\(\displaystyle \lim_{n\to\infty}\frac{\frac{1}{n}}{\frac{1}{2^n}}\text{.}\)
\(-\infty\text{.}\)
\(0\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\)
\(1\text{.}\)
\(\infty\text{.}\)
(b)
Does
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n}\) converge or diverge?
(c)
Let
\(\displaystyle b_n=\frac{1}{n^2}\text{.}\) Compute
\(\displaystyle \lim_{n\to\infty}\frac{\frac{1}{n^2}}{\frac{1}{2^n}}\text{.}\)
\(\infty\text{.}\)
\(\ln(2)\text{.}\)
\(1\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\)
\(-\infty\text{.}\)
(d)
Does
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}\) converge or diverge?
(e)
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If
\begin{equation*}
\lim_{n \to \infty} \frac{b_n}{a_n}
\end{equation*}
diverges, can we conclude that \(\displaystyle \sum b_n\) converges or diverges?
Activity 8.6.7 .
We wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converges or diverges using
Fact 8.6.5 .
(a)
Compute
\begin{equation*}
\displaystyle\lim_{n\to\infty}\frac{\frac{1}{4^n-1}}{\frac{1}{4^n}}.
\end{equation*}
(b)
Does the geometric series
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n}\) converge or diverge by
Fact 8.4.2 ?
(c)
Does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converge or diverge?
Activity 8.6.8 .
We wish to determine if
\(\displaystyle \sum_{n=2}^\infty \frac{2}{\sqrt{n+3}}\) converges or diverges using
Fact 8.6.5 .
(a)
To which of the following should we compare \(\displaystyle \{a_n\}=\left\{\frac{2}{\sqrt{n+3}}\right\}\text{?}\)
\(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)
(b)
Compute
\(\displaystyle \lim_{n\to\infty} \frac{b_n}{a_n}\text{.}\)
(c)
Compute
\(\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}\text{.}\)
(d)
What is true about \(\displaystyle \lim_{n\to\infty} \frac{b_n}{a_n}\) and \(\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}\text{?}\)
Their values are reciprocals.
Their values negative reciprocals.
They are both positive finite constants.
Only one value is a finite positive constant.
One value is \(0\) and the other value is infinite.
(e)
Does the series
\(\displaystyle \sum_{n=2}^\infty \frac{1}{\sqrt{n}}\) converge or diverge?
(f)
Using your chosen sequence and
Fact 8.6.5 , does
\(\displaystyle \sum_{n=2}^\infty \frac{2}{\sqrt{n+3}}\) converge or diverge?
Activity 8.6.9 .
We wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{3}{n^2+8n+5}\) converges or diverges using
Fact 8.6.5 .
(a)
To which of the following should we compare \(\displaystyle \{x_n\}=\left\{\frac{3}{n^2+8n+5} \right\}\text{?}\)
\(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)
(b)
Using your chosen sequence and
Fact 8.6.5 , does
\(\displaystyle \frac{3}{n^2+8n+5}\) converge or diverge?
Activity 8.6.10 .
Use
Fact 8.6.5 to determine if the series
\(\displaystyle \sum_{n=5}^\infty \frac{2}{4^n}\) converges or diverges.
Activity 8.6.11 .
Consider sequences
\(\{a_n\}, \{b_n\}\) where
\(a_n\geq b_n\geq 0\text{.}\)
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\text{.}\)
Figure 181. Plots of \(\{a_n\}, \{b_n\}\)
(a)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) converges. What could be said about \(\{b_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges.
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(b)
Suppose that \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n+1}\) which diverges. Which of the following statements are true?
\(\displaystyle 0\leq \frac{1}{2n^2} \leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n^2}\) is a convergent \(p\) -series where \(p=2\text{.}\)
\(\displaystyle 0\leq \frac{1}{2n}\leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n}\) is a divergent \(p\) -series where \(p=1\text{.}\)
(c)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) was some series that diverges. What could be said about \(\{b_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges.
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(d)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) diverges. What could be said about \(\{a_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty a_n\) converges.
\(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.
(e)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^\infty \frac{1}{3^n}\) which converges. Which of the following statements are true?
\(\displaystyle 0\leq \frac{1}{3^n} \leq \frac{1}{2^n}\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty \frac{1}{2^n}\) is a convergent geometric series where \(\displaystyle |r|=\frac{1}{2} \lt 1\text{.}\)
\(\displaystyle 0\leq \frac{1}{3^n} \leq 1\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty 1\) diverges by the Divergence Test.
(f)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) was some series that converges. What could be said about \(\{a_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty a_n\) converges.
\(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.
Fact 8.6.12 .
Suppose we have sequences \(\{a_n\}, \{b_n\}\) so that for some \(k\) we have that \(0\leq b_n\leq a_n\) for each \(k\geq n\text{.}\) Then we have the following results:
If \(\displaystyle\sum_{k=n}^\infty a_n\) converges, then so does \(\displaystyle\sum_{k=n}^\infty b_n\text{.}\)
If \(\displaystyle\sum_{k=n}^\infty b_n\) diverges, then so does \(\displaystyle\sum_{k=n}^\infty a_n\text{.}\)
Activity 8.6.13 .
Suppose that you were handed positive sequences
\(\{a_n\}, \{b_n\}\text{.}\) For the first few values
\(a_n\geq b_n\text{,}\) but after that what happens is unclear until
\(n=100\text{.}\) Then for any
\(n\geq 100\) we have that
\(a_n \leq b_n\text{.}\)
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\) initially but eventually \(a_n\leq b_n\geq 0\text{.}\)
Figure 182. Plots of \(\{a_n\}, \{b_n\}\)
(a)
How might we best utilize
Fact 8.6.12 to determine the convergence of
\(\displaystyle \sum_{n=0}^\infty a_n\) or
\(\displaystyle \sum_{n=0}^\infty b_n\text{?}\)
Since
\(a_n\) is sometimes greater than, and sometimes less than
\(b_n\text{,}\) there is no way to utilize
Fact 8.6.12 .
Since initially, we have
\(b_n\leq a_n\text{,}\) we can utilize
Fact 8.6.12 by assuming
\(a_n\geq b_n\text{.}\)
Since we can rewrite
\(\displaystyle \sum_{n=0}^\infty a_n=\sum_{n=0}^{99} a_n+\sum_{n=100}^\infty a_n\) and
\(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^{99} b_n+\sum_{n=100}^\infty b_n\) and
\(\displaystyle \sum_{n=0}^{99} a_n, \sum_{n=0}^{99} b_n\) are necessarily finite, we can compare
\(\displaystyle \sum_{n=100}^\infty a_n, \sum_{n=100}^\infty b_n\) with
Fact 8.6.12 .
Fact 8.6.14 . The Direct Comparison Test.
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If there is a \(k\) such that \(b_n\leq a_n\) for each \(n\geq k\text{,}\) then:
If \(\displaystyle \sum a_n\) converges, then so does \(\displaystyle \sum b_n\text{.}\)
If \(\displaystyle \sum b_n\) diverges, then so does \(\displaystyle \sum a_n\text{.}\)
Activity 8.6.15 .
Suppose we wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converged using
Fact 8.6.14 .
(a)
Does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{3n}\) converge or diverge?
(b)
For which value \(k\) is \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{?}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=0\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=1\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=2\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=3\text{.}\)
There is no \(k\) for which \(\displaystyle \frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{.}\)
(c)
Use
Fact 8.6.14 and compare
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) to
\(\displaystyle \sum_{n=1}^\infty \frac{1}{3n}\) to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converges or diverges.
Activity 8.6.16 .
Suppose we wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) converged using
Fact 8.6.14 .
(a)
Which series should we compare
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) to best utilize
Fact 8.6.14 ?
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n+5}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2+5}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n+5}\text{.}\)
(b)
Using your chosen series and
Fact 8.6.14 , does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) converge or diverge?
Activity 8.6.17 .
For each of the following series, determine if it converges or diverges, and explain your choice.
(a)
\(\displaystyle \sum_{n= 4 }^\infty \frac{3}{\log\left(n\right) + 2}.\) (b)
\(\displaystyle \sum_{n= 3 }^\infty \frac{1}{n^{2} + 2 \, n + 1}.\)
Subsection 8.6.2 Videos
Figure 183. Video: Use the direct comparison and limit comparison tests to determine if a series converges or diverges
Subsection 8.6.3 Exercises