Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.8 Absolute Convergence (SQ8)
Learning Outcomes
Determine if a series converges absolutely or conditionally.
Subsection 8.8.1 Activities
Activity 8.8.1 .
Recall the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n}\) from
ActivityΒ 8.7.5 .
(a)
Does the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n}\) converge or diverge?
(b)
Does the series
\(\displaystyle \sum_{n=1}^\infty \left|\frac{(-1)^n}{n}\right|\) converge or diverge?
Activity 8.8.2 .
Consider the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n^2}\text{.}\)
(a)
Does the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n^2}\) converge or diverge?
(b)
Does the series
\(\displaystyle \sum_{n=1}^\infty \left|\frac{(-1)^n}{n^2}\right|\) converge or diverge?
Definition 8.8.3 .
Given a series
\begin{equation*}
\sum a_n
\end{equation*}
we say that \(\displaystyle \sum a_n\) is absolutely convergent if \(\displaystyle \sum |a_n|\) converges.
Activity 8.8.4 .
Consider the series:
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^nn!}{(2n)!}\text{.}\)
(a)
Does the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^nn!}{(2n)!}\) converge or diverge? (Recall
FactΒ 8.7.6 .)
(b)
Compute
\(|a_n|\text{.}\)
(c)
Does the series
\(\displaystyle \sum_{n=1}^\infty \frac{(-1)^nn!}{(2n)!}\) converge absolutely?
Fact 8.8.5 .
Notice that
FactΒ 8.7.6 and
FactΒ 8.7.7 both involve taking absolute values to determine convergence. As such, series that are convergent by either the Ratio Test or the Root Test are also absolutely convergent (by applying the same test after taking the absolute value).
Activity 8.8.6 .
Consider the series:
\(\displaystyle \sum_{n=1}^\infty -n\text{.}\)
(a)
Does the series
\(\displaystyle \sum_{n=1}^\infty -n\) converge or diverge?
(b)
Compute
\(|a_n|\text{.}\)
(c)
Does the series
\(\displaystyle \sum_{n=1}^\infty -n\) converge absolutely?
Activity 8.8.7 .
For each of the following series, determine if the series is
convergent , and if the series is
absolutely convergent .
(a)
\(\displaystyle \sum_{n=1}^\infty \frac{n^2(-1)^n}{n^3+1}\text{.}\) (b)
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}\text{.}\) (c)
\(\displaystyle \sum_{n=1}^\infty (-1)^n \left(\frac{2}{3}\right)^n\text{.}\)
Activity 8.8.8 .
If you know a series \(\displaystyle \sum a_n\) is absolutely convergent, what can you conclude about whether or not \(\displaystyle \sum a_n\) is convergent?
We cannot determine if \(\displaystyle \sum a_n\) is convergent.
\(\displaystyle \sum a_n\) is convergent since it βgrows slowerβ than \(\displaystyle \sum |a_n|\) (and falls slower than \(\displaystyle \sum -|a_n|\) ).
Fact 8.8.9 .
If
\(\displaystyle \sum a_n\) is absolutely convergent, then it must be convergent.
Activity 8.8.10 .
Subsection 8.8.2 Videos
Figure 185. Video: Determine if a series converges absolutely or conditionally
Subsection 8.8.3 Exercises