Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.3 Integration of Trigonometry (TI3)
Learning Outcomes
Compute integrals involving products of trigonometric functions.
Subsection 5.3.1 Activities
Activity 5.3.1 .
Consider \(\displaystyle\int \sin(x)\cos(x) \, dx\text{.}\) Which substitution would you choose to evaluate this integral?
\(\displaystyle u=\sin(x)\)
\(\displaystyle u=\cos(x)\)
\(\displaystyle u=\sin(x)\cos(x)\)
Substitution is not effective
Activity 5.3.2 .
Consider \(\displaystyle\int \sin^4(x)\cos(x) \, dx\text{.}\) Which substitution would you choose to evaluate this integral?
\(\displaystyle u=\sin(x)\)
\(\displaystyle u=\sin^4(x)\)
\(\displaystyle u=\cos(x)\)
Substitution is not effective
Activity 5.3.3 .
Consider \(\displaystyle\int \sin^4(x)\cos^3(x) \, dx\text{.}\) Which substitution would you choose to evaluate this integral?
\(\displaystyle u=\sin(x)\)
\(\displaystyle u=\cos^3(x)\)
\(\displaystyle u=\cos(x)\)
Substitution is not effective
Activity 5.3.4 .
Itβs possible to use substitution to evaluate
\(\displaystyle\int \sin^4(x)\cos^3(x) \, dx\text{,}\) by taking advantage of the trigonometric identity
\(\sin^2(x)+\cos^2(x)=1\text{.}\)
Complete the following substitution of
\(u=\sin(x),\, du=\cos(x)\,dx\) by filling in the missing
\(\unknown\) s.
\begin{align*}
\int \sin^4(x)\cos^3(x)\,dx &=\int\sin^4(x)(\,\unknown\,)\cos(x)\,dx\\
&=\int\sin^4(x)(1-\unknown)\cos(x)\,dx\\
&= \int\unknown(1-\unknown)\,du\\
&= \int (u^4-u^6)\,du\\
&= \frac{1}{5}u^5-\frac{1}{7}u^7+C\\
&= \unknown
\end{align*}
Activity 5.3.5 .
Trying to substitute
\(u=\cos(x),du=-\sin(x)\,dx\) in the previous example is less successful.
\begin{align*}
\int \sin^4(x)\cos^3(x)\,dx &=-\int\sin^3(x)\cos^3(x)(-\sin(x)\,dx)\\
&=-\int\sin^3(x)u^3\,du\\
&= \cdots?
\end{align*}
Which feature of \(\sin^4(x)\cos^3(x)\) made \(u=\sin(x)\) the better choice?
The even power of \(\sin^4(x)\)
The odd power of \(\cos^3(x)\)
Activity 5.3.6 .
Try to show
\begin{equation*}
\int \sin^5(x)\cos^2(x)\,dx=
-\frac{1}{7} \, \cos^{7}\left(x\right) + \frac{2}{5} \, \cos^{5}\left(x\right) - \frac{1}{3} \, \cos^{3}\left(x\right)+C
\end{equation*}
by first trying \(u=\sin(x)\text{,}\) and then trying \(u=\cos(x)\) instead.
Which substitution worked better and why?
\(u=\sin(x)\) due to \(\sin^5(x)\) βs odd power.
\(u=\sin(x)\) due to \(\cos^2(x)\) βs even power.
\(u=\cos(x)\) due to \(\sin^5(x)\) βs odd power.
\(u=\cos(x)\) due to \(\cos^2(x)\) βs even power.
Activity 5.3.8 .
Letβs consider
\(\displaystyle\int \sin^2(x) \, dx\text{.}\)
(a)
Use the fact that
\(\sin^2(\theta)=\displaystyle\frac{1-\cos(2\theta)}{2}\) to rewrite the integrand using the above identities as an integral involving
\(\cos(2x)\text{.}\)
(b)
Show that the integral evaluates to
\(\dfrac{1}{2} \, x - \dfrac{1}{4} \, \sin\left(2 \, x\right)+C\text{.}\)
Activity 5.3.9 .
Letβs consider
\(\displaystyle\int \sin^2(x)\cos^2(x) \, dx\text{.}\)
(a)
Use the fact that
\(\cos^2(\theta)=\displaystyle\frac{1+\cos(2\theta)}{2}\) and
\(\sin^2(\theta)=\displaystyle\frac{1-\cos(2\theta)}{2}\) to rewrite the integrand using the above identities as an integral involving
\(\cos^2(2x)\text{.}\)
(b)
Use the above identities to rewrite this new integrand as one involving
\(\cos(4x)\text{.}\)
(c)
Show that integral evaluates to
\(\dfrac{1}{8} \, x - \dfrac{1}{32} \, \sin\left(4 \, x\right)+C\text{.}\)
Activity 5.3.10 .
Consider \(\displaystyle\int \sin^4(x)\cos^4(x) \, dx\text{.}\) Which would be the most useful way to rewrite the integral?
\(\displaystyle \displaystyle\int (1-\cos^2(x))^2\cos^4(x) \, dx\)
\(\displaystyle \displaystyle\int \sin^4(x)(1-\sin^2(x))^2 \, dx\)
\(\displaystyle \displaystyle\int \left(\frac{1-\cos(2x)}{2}\right)^2\left(\frac{1+\cos(2x)}{2}\right)^2 \, dx\)
Activity 5.3.11 .
Consider \(\displaystyle\int \sin^3(x)\cos^5(x) \, dx\text{.}\) Which would be the most useful way to rewrite the integral?
\(\displaystyle \displaystyle\int (1-\cos^2(x))\cos^5(x) \sin(x)\, dx\)
\(\displaystyle \displaystyle\int \sin^3(x)\left(\frac{1+\cos(2x)}{2}\right)^2\cos(x) \, dx\)
\(\displaystyle \displaystyle\int \sin^3(x)(1-\sin^2(x))^2\cos(x) \, dx\)
Activity 5.3.13 .
Consider
\(\displaystyle\int \sin(\theta)\sin(3\theta) \, d\theta\text{.}\)
(a)
Find an identity from
SectionΒ A.2 which could be used to transform our integrand.
(b)
Rewrite the integrand using the selected identity.
(c)
Subsection 5.3.2 Videos
Figure 106. Video: Compute integrals involving products of trigonometric functions
Subsection 5.3.3 Exercises