Suppose \(\displaystyle S_5=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}.\) Without actually computing this sum, which of the following is equal to \(\left(1-\frac{1}{2}\right)S_5\text{?}\)
Recall from ActivityΒ 8.3.4 that \(\displaystyle A_{100}=2+\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+\frac{2}{3^4}+\cdots+\frac{2}{3^{100}}=2\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\cdots+\frac{1}{3^{100}}\right).\)
Suppose that \(\displaystyle \{b_n\}_{n=0}^\infty=\{(-2)^n\}_{n=0}^\infty=\{1,-2,4,-8,\ldots\}\text{.}\) Let \(B_n=\displaystyle\sum_{i=0}^n b_i\) be the \(n\)th partial sum of \(\{b_n\}\text{.}\)
Find the closed form for the \(n\)th partial sum for the geometric sequence \(A_n=\displaystyle\sum_{i=0}^n a_i=\displaystyle\sum_{i=0}^n \left(-\frac{2}{3}\right)^n\text{.}\)
Find the closed form for the \(n\)th partial sum for the geometric sequence \(B_n=\displaystyle\sum_{i=0}^n b_i=\displaystyle\sum_{i=0}^n 2\cdot\left(-1\right)^n\text{.}\)
Find the closed form for the \(n\)th partial sum for the geometric sequence \(C_n=\displaystyle\sum_{i=0}^n c_i=\displaystyle\sum_{i=0}^n -3\cdot \left(1.2\right)^n\text{.}\)
When the series (the sequence of partial sums) converges to a limit, we say the series is convergent and this limit is the value of the series, and write:
Let \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}=1-\frac{1}{2}, \frac{1}{2}-\frac{1}{3}, \frac{1}{3}-\frac{1}{4},\ldots\text{.}\)
Which of the following is the best strategy for evaluating \(\displaystyle A_{4}=\left(1-\frac{1}{2} \right)+\left(\frac{1}{2}-\frac{1}{3} \right)+\left(\frac{1}{3}-\frac{1}{4} \right)+\left(\frac{1}{4}-\frac{1}{5} \right)\text{?}\)
Recall from ActivityΒ 8.3.14 that \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}\) and \(\displaystyle A_n=\sum_{i=1}^na_i=\sum_{i=1}^n \left(\frac{1}{i}-\frac{1}{i+1} \right)\text{.}\)
Recall from ActivityΒ 8.3.14 that \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}\) and \(\displaystyle A_n=\sum_{i=1}^na_i=\sum_{i=1}^n \left(\frac{1}{i}-\frac{1}{i+1} \right)\text{.}\)
Given a sequence \(\{x_n\}_1^\infty\) and a sequence of the form \(\{s_n\}_1^\infty:=\{x_n-x_{n+1}\}_1^\infty\) we call the series \(S_n=\displaystyle\sum_{i=1}^n s_i=\sum_{i=1}^n(x_i-x_{i+1})\) to be a telescoping series.
Given the closed forms you found in ActivityΒ 8.3.19, determine which of the following telescoping series converge. If so, to what value does it converge?
Consider the partial sum sequence \(\displaystyle A_n=\left(-2\right)+\left(\frac{2}{3}\right)+\left(-\frac{2}{9}\right)+\cdots+\left(-2\cdot \left( -\frac{1}{3}\right)^n \right).\)
Figure178.Video: Compute the first few terms of a telescoping or geometric partial sum sequence, and find a closed form for this sequence, and compute its limit.