Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.7 Area Under Curves (IN7)
Learning Outcomes
Use definite integrals to find area under a curve.
Subsection 4.7.1 Activities
Activity 4.7.2 .
(a)
Write the net area between
\(f(x)=6 \, x^{2} - 18 \, x\) and the
\(x\) -axis from
\(x=2\) to
\(x=7\) as a definite integral.
(b)
Evaluate this definite integral to verify the net area is equal to
\(265\) square units.
Activity 4.7.4 .
Follow these steps to find the total area between
\(f(x)=6 \, x^{2} - 18 \, x\) and the
\(x\) -axis from
\(x=2\) to
\(x=7\text{.}\)
(a)
Find all values for
\(x\) where
\(f(x)=6 \, x^{2} - 18 \, x\) is equal to
\(0\text{.}\)
(b)
Only one such value is between \(x=2\) and \(x=7\text{.}\) Use this value to fill in the \(\unknown\) below, then verify that its value is \(279\) square units.
\begin{equation*}
\text{Area} =
\left| \int_{ 2 }^{ \unknown }
\left( 6 \, x^{2} - 18 \, x \right) dx \right| +
\left| \int_{ \unknown }^{ 7 }
\left( 6 \, x^{2} - 18 \, x \right) dx \right|
\end{equation*}
Activity 4.7.5 .
Answer the following questions concerning
\(f(x)=6 \, x^{2} - 96\text{.}\)
(a)
What is the total area between
\(f(x)=6 \, x^{2} - 96\) and the
\(x\) -axis from
\(x=-1\) to
\(x=9\text{?}\)
(b)
What is the net area between
\(f(x)=6 \, x^{2} - 96\) and the
\(x\) -axis from
\(x=-1\) to
\(x=9\text{?}\)
Subsection 4.7.2 Videos
Figure 101. Video for IN7
Subsection 4.7.3 Exercises