Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.5 Tables of Integrals (TI5)
Learning Outcomes
I can integrate functions using a table of integrals.
Subsection 5.5.1 Activities
Activity 5.5.1 .
Consider the integral
\(\displaystyle\int \sqrt{16-9x^2} \,dx\text{.}\) Which of the following substitutions appears most promising to find an antiderivative for this integral?
\(\displaystyle u=16-9x^2\)
Activity 5.5.2 .
The form of which entry from
SectionΒ A.1 best matches the form of the integral
\(\displaystyle\int \sqrt{16-9x^2} \,dx\text{?}\)
Activity 5.5.3 .
For each of the following integrals, identify which entry from
SectionΒ A.1 best matches the form of that integral.
(a)
\(\displaystyle\int \frac{25x^2}{\sqrt{25x^2-9}} \,dx\)
(b)
\(\displaystyle\int \frac{81x^2}{\sqrt{16-x^2}} \,dx\)
(c)
\(\displaystyle\int \frac{1}{10x \sqrt{100-x^2}} \,dx\)
(d)
\(\displaystyle\int \frac{7}{\sqrt{25x^2-9}} \,dx\)
(e)
\(\displaystyle\int \frac{1}{\sqrt{25x^2+16}} \,dx\)
Example 5.5.4 .
Here is how one might write out the explanation of how to find
\(\displaystyle\int \frac{3}{x\sqrt{49x^2-4}} \,dx\) from start to finish:
\begin{align*}
\int \frac{3}{x\sqrt{49x^2-4}} \,dx &&\text{Let }&u^2=49x^2\\
&&\text{Let }&a^2=4 \\
&&& u = 7x\\
&&& \,du = 7\,dx\\
&&& \frac{1}{7}\,du = \,dx\\
&&& a = 2\\
\int \frac{3}{x\sqrt{49x^2-4}} \,dx &= 3\int \frac{1}{x\sqrt{49x^2-4}} (\,dx)\\
&= 3\int \frac{1}{\frac{u}{7}\sqrt{u^2-a^2}} \bigg(\frac{1}{7}\,du\bigg)\\
&= 3\int \frac{1}{u\sqrt{u^2-a^2}} \,du & \text{which best matches f.}\\
&= 3\bigg(\frac{1}{a}\arcsec \bigg(\frac{u}{a}\bigg)\bigg)+C\\
&= \frac{3}{2}\arcsec \bigg(\frac{7x}{2}\bigg)+C
\end{align*}
Activity 5.5.5 .
Which step of the previous example do you think was the most important?
Choosing
\(u^2=49x^2\) and
\(a^2=4\text{.}\)
Finding
\(u=7x\text{,}\) \(du=7\,dx\text{,}\) \(\displaystyle\frac{1}{7}\,du=\,dx\text{,}\) and
\(a=2\text{.}\)
Substituting
\(\displaystyle \frac{3}{x\sqrt{49x^2-4}} \,dx\) with
\(\displaystyle3\int \frac{1}{u\sqrt{u^2-a^2}} \,du\) and finding the best match of f from
SectionΒ A.1 .
Integrating
\(\displaystyle 3\int \dfrac{1}{u\sqrt{u^2-a^2}} \,du=3\left(\frac{1}{a}\arcsec\left(\dfrac{u}{a}\right)\right)+C\text{.}\)
Unsubstituting
\(\displaystyle 3\left(\frac{1}{a}\arcsec\left(\frac{u}{a}\right)\right)+C\) to get
\(\dfrac{3}{2}\arcsec\left(\dfrac{7x}{2}\right)+C\text{.}\)
Activity 5.5.6 .
Consider the integral
\(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\text{.}\) Suppose we proceed using
SectionΒ A.1 . We choose
\(u^2=9x^2\) and
\(a^2=64\text{.}\)
(a)
(b)
(c)
(d)
What do you get when plugging these pieces into the integral
\(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\text{?}\)
(e)
Is this a good substitution choice or a bad substitution choice?
Activity 5.5.7 .
Consider the integral
\(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\) once more. Suppose we still proceed using
SectionΒ A.1 . However, this time we choose
\(u^2=x^2\) and
\(a^2=64\text{.}\) Do you prefer this choice of substitution or the choice we made in
ActivityΒ 5.5.6 ?
We prefer the substitution choice of
\(u^2=x^2\) and
\(a^2=64\text{.}\)
We prefer the substitution choice of
\(u^2=9x^2\) and
\(a^2=64\text{.}\)
We do not have a strong preference, since these substitution choices are of the same difficulty.
Activity 5.5.8 .
Use the appropriate substitution and entry from
SectionΒ A.1 to show that
\(\displaystyle\int \frac{7}{x\sqrt{4+49x^2}} \,dx=-\frac{7}{2}\ln\left|\frac{2+\sqrt{49x^2+4}}{7x}\right|+C\text{.}\)
Activity 5.5.9 .
Use the appropriate substitution and entry from
SectionΒ A.1 to show that
\(\displaystyle\int \frac{3}{5x^2\sqrt{36-49x^2}} \,dx=-\frac{\sqrt{36-49x^2}}{60x}+C\text{.}\)
Activity 5.5.10 .
Evaluate the integral
\(\displaystyle\int 8\sqrt{4x^2-81} \,dx\text{.}\) Be sure to specify which entry is used from
SectionΒ A.1 at the corresponding step.
Subsection 5.5.2 Videos
Figure 108. Video: I can integrate functions using a table of integrals
Subsection 5.5.3 Exercises