Skip to main content
Logo image

Section 5.5 Tables of Integrals (TI5)

Subsection 5.5.1 Activities

Activity 5.5.3.

For each of the following integrals, identify which entry from SectionΒ A.1 best matches the form of that integral.

Example 5.5.4.

Here is how one might write out the explanation of how to find \(\displaystyle\int \frac{3}{x\sqrt{49x^2-4}} \,dx\) from start to finish:
\begin{align*} \int \frac{3}{x\sqrt{49x^2-4}} \,dx &&\text{Let }&u^2=49x^2\\ &&\text{Let }&a^2=4 \\ &&& u = 7x\\ &&& \,du = 7\,dx\\ &&& \frac{1}{7}\,du = \,dx\\ &&& a = 2\\ \int \frac{3}{x\sqrt{49x^2-4}} \,dx &= 3\int \frac{1}{x\sqrt{49x^2-4}} (\,dx)\\ &= 3\int \frac{1}{\frac{u}{7}\sqrt{u^2-a^2}} \bigg(\frac{1}{7}\,du\bigg)\\ &= 3\int \frac{1}{u\sqrt{u^2-a^2}} \,du & \text{which best matches f.}\\ &= 3\bigg(\frac{1}{a}\arcsec \bigg(\frac{u}{a}\bigg)\bigg)+C\\ &= \frac{3}{2}\arcsec \bigg(\frac{7x}{2}\bigg)+C \end{align*}

Activity 5.5.5.

Which step of the previous example do you think was the most important?
  1. Choosing \(u^2=49x^2\) and \(a^2=4\text{.}\)
  2. Finding \(u=7x\text{,}\) \(du=7\,dx\text{,}\) \(\displaystyle\frac{1}{7}\,du=\,dx\text{,}\) and \(a=2\text{.}\)
  3. Substituting \(\displaystyle \frac{3}{x\sqrt{49x^2-4}} \,dx\) with \(\displaystyle3\int \frac{1}{u\sqrt{u^2-a^2}} \,du\) and finding the best match of f from SectionΒ A.1.
  4. Integrating \(\displaystyle 3\int \dfrac{1}{u\sqrt{u^2-a^2}} \,du=3\left(\frac{1}{a}\arcsec\left(\dfrac{u}{a}\right)\right)+C\text{.}\)
  5. Unsubstituting \(\displaystyle 3\left(\frac{1}{a}\arcsec\left(\frac{u}{a}\right)\right)+C\) to get \(\dfrac{3}{2}\arcsec\left(\dfrac{7x}{2}\right)+C\text{.}\)

Activity 5.5.6.

Consider the integral \(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\text{.}\) Suppose we proceed using SectionΒ A.1. We choose \(u^2=9x^2\) and \(a^2=64\text{.}\)
(d)
What do you get when plugging these pieces into the integral \(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\text{?}\)
(e)
Is this a good substitution choice or a bad substitution choice?

Activity 5.5.7.

Consider the integral \(\displaystyle\int \frac{1}{\sqrt{64-9x^2}} \,dx\) once more. Suppose we still proceed using SectionΒ A.1. However, this time we choose \(u^2=x^2\) and \(a^2=64\text{.}\) Do you prefer this choice of substitution or the choice we made in ActivityΒ 5.5.6?
  1. We prefer the substitution choice of \(u^2=x^2\) and \(a^2=64\text{.}\)
  2. We prefer the substitution choice of \(u^2=9x^2\) and \(a^2=64\text{.}\)
  3. We do not have a strong preference, since these substitution choices are of the same difficulty.

Activity 5.5.8.

Use the appropriate substitution and entry from SectionΒ A.1 to show that \(\displaystyle\int \frac{7}{x\sqrt{4+49x^2}} \,dx=-\frac{7}{2}\ln\left|\frac{2+\sqrt{49x^2+4}}{7x}\right|+C\text{.}\)

Activity 5.5.9.

Use the appropriate substitution and entry from SectionΒ A.1 to show that \(\displaystyle\int \frac{3}{5x^2\sqrt{36-49x^2}} \,dx=-\frac{\sqrt{36-49x^2}}{60x}+C\text{.}\)

Activity 5.5.10.

Evaluate the integral \(\displaystyle\int 8\sqrt{4x^2-81} \,dx\text{.}\) Be sure to specify which entry is used from SectionΒ A.1 at the corresponding step.

Subsection 5.5.2 Videos

Figure 108. Video: I can integrate functions using a table of integrals

Subsection 5.5.3 Exercises