Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.6 FTC for Derivatives of Integrals (IN6)
Learning Outcomes
Find the derivative of an integral using the Fundamental Theorem of Calculus.
Subsection 4.6.1 Activities
Theorem 4.6.2 . The Fundamental Theorem of Calculus (Part II).
If a function \(f\) is continuous on the closed interval \([a,b]\text{,}\) then the area function
\begin{equation*}
A(x) = \int_a^x f(t)\,dt \,\,\,\,\, \mathrm{for}\,\,\, a\leq x\leq b,
\end{equation*}
is continuous on \([a,b]\) and differentiable on \((a,b)\text{.}\) The area function satisfies \(A'(x) = f(x)\text{.}\) Equivalently,
\begin{equation*}
A'(x) = \frac{d}{dx}\int_a^x f(t)\,dt = f(x),
\end{equation*}
which means that the area function of \(f\) is an antiderivative of f on \([a,b]\text{.}\)
Activity 4.6.3 .
For the following activity we will explore the Fundamental Theorem of Calculus Part II.
(a)
Given that
\(A(x) = \int_a^xt^3\,dt\text{,}\) then by the Fundamental Theorem of Calculus Part I,
\(\displaystyle A(x) = x^3-a^3\)
\(\displaystyle A(x) = a^4 - x^4\)
\(\displaystyle A(x) = \frac{1}{4}(x^4 - a^4)\)
\(\displaystyle A(x) = 3x^2\)
(b)
Using what you found for
\(A(x)\text{,}\) what is
\(A'(x)\)
\(\displaystyle A'(x) = 3x^2\)
\(\displaystyle A'(x) = 4a^3 - 4x^3\)
\(\displaystyle A'(x) = x^3\)
\(\displaystyle A'(x) = 6x\)
(c)
Use the Fundamental Theorem of Calculus Part II to find
\(A'(x)\text{.}\) What do you notice between what you got above and using FTC Part II? Which method do you prefer?
\(\displaystyle A'(x) = 3x^2\)
\(\displaystyle A'(x) = 4a^3 - 4x^3\)
\(\displaystyle A'(x) = x^3\)
\(\displaystyle A'(x) = 6x\)
Activity 4.6.4 .
Given
\(A(x) = \int_x^be^t\,dt\text{,}\) what is
\(A'(x)\text{?}\)
\(\displaystyle A'(x) = -e^x\)
\(\displaystyle A'(x) = e^x\)
\(\displaystyle A'(x) = e^b-e^x\)
\(\displaystyle A'(x) = e^x-e^b\)
Activity 4.6.6 .
Recall that by the Fundamental Theorem of Calculus Part I,
\(\int_a^bf(t)\,dt = F(b)-F(a)\text{.}\)
(a)
Let
\(A(x) = \int_x^{x^2}f(t)\,dt\) and re-write using FTC Part I.
(b)
Using what you got find
\(A'(x)\text{.}\) Explain what derivative rule(s) you used.
(c)
Using what you found what is the derivative of
\(A(x) = \int_x^{x^2}(t+2)\,dt\text{?}\)
\(\displaystyle A'(x) = 2x(x+2)-(x+2)\)
\(\displaystyle A'(x) = (x+2)-2x(x^2+2)\)
\(\displaystyle A'(x) = (x^2+2)-(x+2)\)
\(\displaystyle A'(x) = 2x(x^2+2)-(x+2)\)
Theorem 4.6.8 . The Fundamental Theorem of Calculus (Part II): Modified.
If
\begin{equation*}
A(x) = \int_{g(x)}^{h(x)} f(t)\,dt
\end{equation*}
then
\begin{equation*}
A'(x) = \frac{d}{dx}\int_{g(x)}^{h(x)} f(t)\,dt = f(h(x))h'(x) - f(g(x))g'(x),
\end{equation*}
where \(g(x)\) and \(h(x)\) are continuous differentiable functions.
Activity 4.6.9 .
Given
\(A(x) = \int_{x^3}^{x^5}(\sin(t) - 2)\,dt\text{,}\) what is
\(A'(x)\text{?}\)
Subsection 4.6.2 Videos
Figure 98. Video for IN6
Subsection 4.6.3 Exercises